新零售的“新”是人为赋予的概念,指新时代下的零售业态。无论新零售还是传统零售都是零售,都必须回归零售的本质。零售的本质是将商品卖给用户,并以此赚钱。因此,控制成本,提升收入,才是最基础及最重要的。
在当前模式下,零售行业饱受库存积压和浪费的困扰。生产商和供应商缺乏物流工具来高效跟踪供应链中的产品,而零售商无法获取充分的信息来测算消费者对他们所提供产品的兴趣。
零售行业还必须驾驭多管齐下的采购渠道。随着行业继续将服务转移到线上,零售店正在顺应全渠道商业模式,这种模式通常融合了线下服务、线上服务、线上购买的店内提货选项。
由于这些日益增长的痛点再加上过时的供应指标,零售行业进行自我完善也就顺理成章了。所幸,这些问题的解决方案在于我们时代的新兴技术:人工智能。
浪费问题和消费者体验
零售商和供应商缺乏技术基础设施来精确跟踪从制造商到销售商的产品。如今,在由产品库存缺乏效率而产生的浪费中,供应链物流占到了数十亿美元。例如,零售行业从消费品库存积压/不足中年均浪费 5000 亿美元。
由于无法获取可靠的消费者反馈意见,对于哪些产品将会畅销或吸引顾客注意力,零售商只能玩猜谜游戏。结果,他们要么在消费者不想要的产品上浪费数十亿美元,要么由于消费者想要的产品断货而损失潜在的利润。
将服务迁移至线上带来的问题
许多零售商已采取行动转向全渠道商业模式,这种模式结合了实体店和可通过网站或移动应用程序访问的线上店铺。
由权威机构 委托发布的一份报告发现,在线购物行业 2016 年和 2017 分别增长 12.2% 和 10.3%,分别达到 3760 亿美元和 4150 亿美元。这与线下购物行业进行了比较,其 2016 至 2017 年增长率仅为 3.3%,从 30 亿美元增长到 31 亿美元。
在线服务的增长并没有将线下购物体验渲染为过时的体验。事实上,该行业在这个领域显示了它的通用性,因为零售商已将某些服务转移至线上,并使之结合了线下功能,例如店内提货。然而,随着零售商进行线上/线下混合商业模式的实验,各种挑战也浮出水面。其中包括衡量用户体验、搞定在线发货和定期库存盘点,以及管理线上线下产品服务。
在人工智能时代,从 AI 技术到商业转化,创造下一个万亿级产业,已经形成了一张包含八大要素的全新价值地图。企业家、创业者、投资人的成功与否,从某种程度上来说,与是否能深刻理解其中的8个关键价值创造节点有关。毕竟,这是 AI 驱动的新商业时代,有 AI 特定的创新、创业、创投的逻辑和机会。
从技术源头创新,到整合技术平台,再到商业解决方案,以及用户和客户的场景应用,这张价值地图上的任何一个节点,都是个人和企业创业、创新、投资、转型、升级的巨大机会。
1、开源技术平台
今天,大多数的技术进步都不是封闭的创新发明,技术的跨界、聚合,以及技术的指数级增长,都受益与底层核心的共创共享。因此,很多 AI 技术其实就是开源技术催生出来的新干线。例如,Linux 是开源软件的鼻祖,之后很多世界著名的软件,如安卓以及今天的很多 AI 软件,都有它的基因。再比如 Hodoop,也是一个开源的软件平台,它是全球最大客户管理公司 Salesforce 用来开发 AI 客户的做大数据管理的基石。
这个价值模块的价值创造者,大多是科技极客和 NGO(非政府组织)机构,比如 Hadoop 就是由 Apache 公益基金来支持的。
2、核心技术创造
人工智能的核心技术有三大类,包括:
(1)软件,如语音、图像等感官识别技术、自然语言处理,以及它们的合成、高级算法、数据训练等;
(2)硬件,包括深度学习的专用芯片、传感器、ICT、IOT等;大数据,如数据汇集、存储、计算、可视化等;
(3)云计算,云本身是网络、互联网的一种比喻,云计算是指一种新的机遇互联网及相关服务和交付方式,可以实现每秒 10 万亿次的运算。
每一项技术都有其非常深的技术根系和深浅等级,比如,算法。世界上最简单最初级的算法可能就是1+1=2,几岁的小孩都知道。而世界上最复杂的算法也分为不同级别和流派。在业界,算法从简单到复杂还有不同的方法论。例如,符号主义与数据建模、专家系统有关,经验主义与统计建模有关;连接主义与神经网络有关。未来,也许创新者还会在某一种方法论上继续突破。
这个价值模块的价值创造者,包含了长期扎根技术研发的商业巨头、大学和研究机构。例如,谷歌的 AI 深度学习产品、英伟达、高通、英特尔等公司的 AI 芯片,微软、苹果、科大讯飞等公司的语音 AI ,华为 5G(第五代移动通信技术)下一代 ICT,斯坦福、伯克利、多伦多等大学的基础研究等。
3、开放技术平台
开放技术平台就是核心技术创新者,向第三方公开自己软件或硬件的 API 或者函数,第三方开发者可以在上面直接开发各种商业应用,而无须从 0 研发,有效地实现了技术的快速商业化。特别是在互联网时代,开放技术平台促进了互联网技术和电商的爆发式增长。今天,AI开放平台也将成为技术商业化的重要创新环节。
例如,IBM 的开放沃森分析平台,可以为第三方提供大数据分析功能;脸谱网的wit.ai 开放平台,可以为第三方提供大数据分析功能;科大讯飞的 AIUI 开放平台,为创业者提供了基于 AI 语音功能,可服务于机器人、儿童玩具、电视质控,以及智慧教育的商业应用。
这个价值 模块的价值创造者,大多是由实力的 AI 核心技术公司,也有由它们组成的公益组织,如由硅谷几个企业领袖启动的 Open AI 。
4、技术操作系统
自从人类发明了计算机,开始用技术解决问题,改变世界,技术操作系统就变得至关重要。它通常涉及信息的微处理、存储、文档与进程管理等方面。PC时代的技术操作系统Windows、Linux,移动互联网时代有安卓、ios。今天,谷歌的 TensorFlow (腾三幅)开放平台,被称为 AI 的安卓系统,谷歌自己和第三方都可以在上面开发各种基于 AI 的 APP。
人工智能时代,AI 技术操作系统包括连接、交互、存储、云端一体化等要素。换言之,是指以物联网为基础的万物互联,代替了原有的互联网和移动互联网连接;以语音、图像为主的自然交互,代替了鼠标、键盘、触摸等本地存储;强大的并行计算,代替了执行顺序的技术。
因此,除了手机、PC 等多屏端口的操作系统外,还新诞生了基于云计算的操作系统,涉及存储、计算、调度(弹性技术、DOCKER)、安全(区块链,确保安全真实)等。
这个价值模块的价值创造者,大多是那些在互联网时代积累了客户界面端和大数据资产的企业,例如,谷歌、亚马逊、阿里巴巴、脸谱网、苹果、华为,以及生产核心硬件如GPU(图形处理器)的英伟达等。谁会真正主宰未来 AI 世界的技术操作系统???竞争的大幕才刚刚拉开。
5、应用解决方案
这是技术能否实现商业化的关键环节。通常,任何一个有价值的新技术,都有多个应用。早期电的发明,从点灯照明的应用,到今天成为人类生活和工作无处不在的能源。互联网技术也是从简单的信息链接开始,渗透所有行业,如吃、住、行、医、教、娱等领域,为无处不在的问题提供新思想、新方法、新能量。
今天,AI 要想解决人类尚未解决的难题,就必须先准备好无数种从技术到商业的解决方案。例如,在 B2B 领域,如何用 AI 对癌症做出精准预判和治疗;在 B2C 领域,如何用 AI 助力个人发展。同时,应用解决方案要既有功能性的,也有入口平台型的,如苹果的 Siri 、今日头条等。
这个价值模块的价值创造者,大多是商业解决方案的引领企业,它们往往率先采用新技术,解决商业问题。例如,GE 用 AI 解决能源效率问题,阿里巴巴用 AI 解决城市交通拥堵问题,亚马逊用 AI 解决高效零售配对问题,IBM 用 AI 解决医疗问题,科大讯飞用 AI 解决教育问题,谷歌和百度用 AI 解决无人驾驶问题等。
6、商业运营系统
商业运营系统是建立在技术操作系统之上的商业生态模式。用技术解决问题,只是商业的第一步,而企业如何用技术解决问题,持续解决问题,并创造竞争优势,就形成了一个闭环的商业运营系统。这是技术商业化最本质和最关键的创新环节,大多数技术商业化的不成功和掉进两个“死亡谷”的悲惨命运,就是因为没有科学地设计“商业运营系统”。
过去,这个系统就是商学院教的“标准商业模式”,但是,自从有了互联网和人工智能,组成商业模式的要素发生了根本的变化,因为新技术颠覆了原来的商业逻辑和市场逻辑。例如,过去,对客户进行细分是商业模式中的要素,但是,有了 AI,它就可以在大数据中自动识别和管理客户。因此,商业运营系统的智能化,就成了 AI 商业非常核心的驱动力和关键要素,也就是新 BOT 驱动的解决客户痛点、运营痛点和生态痛点的商业运营系统。
这个价值模块的创造者是所有参与技术商业化过程的创新者。因为,通常创业者或企业家都需要对“如何解决问题、如何实现收益”设计一个商业运营方案,已获得持续发展和增强竞争优势的闭环模式。
7、用户场景应用
这是人工智能时代市场的新形态。过去,一部手机只要能卖出去,不需要讲究诸如“在什么地方使用”、“如何使用”都能够问题,因为,手机的功能就是通话。但是,今天,手机需要用来在国外看新闻、在演讲中做翻译,因此就必须能够在一定的环境和场景下,解决更细微的问题。
例如,当使用者身在国外时,就会获得 AI 关于宽带使用或吃、住、行等方面的帮助,在翻译时,手机就不只是一个简单的通话硬件,而是一个交流的伴侣。同样,亚马逊的 Alexa 音箱、科大讯飞的听见或灵犀,不但是一个家庭的智能管家(帮助节能环保),还可以充当购物向导(让你更高效地消费)的角色,或生活助理(更方便潇洒地实现吃、住、性)的角色。因此,用户场景是设计“商业运营系统”功能和界面的必备要素。
这个价值模块的价值创造者非常特殊,他们不但是企业的创新者,而且还是消费者、供应者等生态成员的参与。因为 AI 的爆发,共享经济将更深刻地渗透和影响每一个人的生活和事业。可以说,没有用户场景的解决方案,很难完全解决用户和客户的痛点问题。
8、用户动态数据循环
这是 AI 动态价值地图最显著的特点:从用户场景获得的用户动态数据,将成为“喂养“机器学习、”生长“ AI 智慧不可或缺的营养成分。这就好像 AI 的存活需要呼吸氧气一样,一旦没有了动态数据,AI 将无法学习,并将失去生命:相反,如果有了动态数据的无限循环,就能形成 AI ”越用越富“的养分原料,并成为以上七大要素源源不断提高可持续创新能力的重要原料。这个闭环的无线循环,能赋予 AI技术和 AI 商业强大的生命力。
零售的未来
零售行业需要一次彻底革新,改善其供应链物流、提升利润并为顾客提升总体购物体验。
AI铸就一套顺畅的系统。在产品流通的各环节中,供应商、零售商和消费者将在一个鼓励各方合作的环境中共存。供应商和零售商将可获取顾客数据和购买趋势,这些将使他们得以做出更有效的商业决策,而消费者将购买到区块链带来的具有确定和完整产品信息的商品。今天的技术创新成为了明天的企业解决方案。他们希望将这些创新引进供应链和零售行业,同时憧憬他们的平台引领这些行业迈向由 AI 和区块链解决方案驱动的技术复兴。(部分内容及数据来源于网络如有侵权请联系删除)
网友评论