美文网首页
机器学习实例——对鸢尾花的分类

机器学习实例——对鸢尾花的分类

作者: Galory | 来源:发表于2019-04-14 21:41 被阅读0次

通过一个开源的实例理解机器学习中的分类


premade_estimator.py如下:

#  Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
"""An Example of a DNNClassifier for the Iris dataset."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import tensorflow as tf

import iris_data


parser = argparse.ArgumentParser()
parser.add_argument('--batch_size', default=100, type=int, help='batch size')
parser.add_argument('--train_steps', default=1000, type=int,
                    help='number of training steps')

def main(argv):
    args = parser.parse_args(argv[1:])

    # Fetch the data
    (train_x, train_y), (test_x, test_y) = iris_data.load_data()

    # Feature columns describe how to use the input.
    my_feature_columns = []
    for key in train_x.keys():
        my_feature_columns.append(tf.feature_column.numeric_column(key=key))

    # Build 2 hidden layer DNN with 10, 10 units respectively.
    classifier = tf.estimator.DNNClassifier(
        feature_columns=my_feature_columns,
        # Two hidden layers of 10 nodes each.
        hidden_units=[10, 10],
        # The model must choose between 3 classes.
        n_classes=3)

    # Train the Model.
    classifier.train(
        input_fn=lambda:iris_data.train_input_fn(train_x, train_y,
                                                 args.batch_size),
        steps=args.train_steps)

    # Evaluate the model.
    eval_result = classifier.evaluate(
        input_fn=lambda:iris_data.eval_input_fn(test_x, test_y,
                                                args.batch_size))

    print('\nTest set accuracy: {accuracy:0.3f}\n'.format(**eval_result))

    # Generate predictions from the model
    expected = ['Setosa', 'Versicolor', 'Virginica']
    predict_x = {
        'SepalLength': [5.1, 5.9, 6.9],
        'SepalWidth': [3.3, 3.0, 3.1],
        'PetalLength': [1.7, 4.2, 5.4],
        'PetalWidth': [0.5, 1.5, 2.1],
    }

    predictions = classifier.predict(
        input_fn=lambda:iris_data.eval_input_fn(predict_x,
                                                labels=None,
                                                batch_size=args.batch_size))

    template = ('\nPrediction is "{}" ({:.1f}%), expected "{}"')

    for pred_dict, expec in zip(predictions, expected):
        class_id = pred_dict['class_ids'][0]
        probability = pred_dict['probabilities'][class_id]

        print(template.format(iris_data.SPECIES[class_id],
                              100 * probability, expec))


if __name__ == '__main__':
    tf.logging.set_verbosity(tf.logging.INFO)
    tf.app.run(main)

iris_data.py如下:

import pandas as pd
import tensorflow as tf

TRAIN_URL = "http://download.tensorflow.org/data/iris_training.csv"
TEST_URL = "http://download.tensorflow.org/data/iris_test.csv"

CSV_COLUMN_NAMES = ['SepalLength', 'SepalWidth',
                    'PetalLength', 'PetalWidth', 'Species']
SPECIES = ['Setosa', 'Versicolor', 'Virginica']

def maybe_download():
    train_path = tf.keras.utils.get_file(TRAIN_URL.split('/')[-1], TRAIN_URL)
    test_path = tf.keras.utils.get_file(TEST_URL.split('/')[-1], TEST_URL)

    return train_path, test_path

def load_data(y_name='Species'):
    """Returns the iris dataset as (train_x, train_y), (test_x, test_y)."""
    train_path, test_path = maybe_download()

    train = pd.read_csv(train_path, names=CSV_COLUMN_NAMES, header=0)
    train_x, train_y = train, train.pop(y_name)

    test = pd.read_csv(test_path, names=CSV_COLUMN_NAMES, header=0)
    test_x, test_y = test, test.pop(y_name)

    return (train_x, train_y), (test_x, test_y)


def train_input_fn(features, labels, batch_size):
    """An input function for training"""
    # Convert the inputs to a Dataset.
    dataset = tf.data.Dataset.from_tensor_slices((dict(features), labels))

    # Shuffle, repeat, and batch the examples.
    dataset = dataset.shuffle(1000).repeat().batch(batch_size)

    # Return the dataset.
    return dataset


def eval_input_fn(features, labels, batch_size):
    """An input function for evaluation or prediction"""
    features=dict(features)
    if labels is None:
        # No labels, use only features.
        inputs = features
    else:
        inputs = (features, labels)

    # Convert the inputs to a Dataset.
    dataset = tf.data.Dataset.from_tensor_slices(inputs)

    # Batch the examples
    assert batch_size is not None, "batch_size must not be None"
    dataset = dataset.batch(batch_size)

    # Return the dataset.
    return dataset


# The remainder of this file contains a simple example of a csv parser,
#     implemented using the `Dataset` class.

# `tf.parse_csv` sets the types of the outputs to match the examples given in
#     the `record_defaults` argument.
CSV_TYPES = [[0.0], [0.0], [0.0], [0.0], [0]]

def _parse_line(line):
    # Decode the line into its fields
    fields = tf.decode_csv(line, record_defaults=CSV_TYPES)

    # Pack the result into a dictionary
    features = dict(zip(CSV_COLUMN_NAMES, fields))

    # Separate the label from the features
    label = features.pop('Species')

    return features, label


def csv_input_fn(csv_path, batch_size):
    # Create a dataset containing the text lines.
    dataset = tf.data.TextLineDataset(csv_path).skip(1)

    # Parse each line.
    dataset = dataset.map(_parse_line)

    # Shuffle, repeat, and batch the examples.
    dataset = dataset.shuffle(1000).repeat().batch(batch_size)

    # Return the dataset.
    return dataset

estimator_test.py如下:

# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""A simple smoke test that runs these examples for 1 training iteraton."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf
import pandas as pd

from six.moves import StringIO

import iris_data
import custom_estimator
import premade_estimator

FOUR_LINES = "\n".join([
    "1,52.40, 2823,152,2",
    "164, 99.80,176.60,66.20,1",
    "176,2824, 136,3.19,0",
    "2,177.30,66.30, 53.10,1",])

def four_lines_data():
  text = StringIO(FOUR_LINES)

  df = pd.read_csv(text, names=iris_data.CSV_COLUMN_NAMES)

  xy = (df, df.pop("Species"))
  return xy, xy


class RegressionTest(tf.test.TestCase):
  """Test the regression examples in this directory."""

  @tf.test.mock.patch.dict(premade_estimator.__dict__,
                           {"load_data": four_lines_data})
  def test_premade_estimator(self):
    premade_estimator.main([None, "--train_steps=1"])

  @tf.test.mock.patch.dict(custom_estimator.__dict__,
                           {"load_data": four_lines_data})
  def test_custom_estimator(self):
    custom_estimator.main([None, "--train_steps=1"])

if __name__ == "__main__":
  tf.test.main()


custom_estimator.py如下:

#  Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
"""An Example of a custom Estimator for the Iris dataset."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import tensorflow as tf

import iris_data

parser = argparse.ArgumentParser()
parser.add_argument('--batch_size', default=100, type=int, help='batch size')
parser.add_argument('--train_steps', default=1000, type=int,
                    help='number of training steps')

def my_model(features, labels, mode, params):
    """DNN with three hidden layers and learning_rate=0.1."""
    # Create three fully connected layers.
    net = tf.feature_column.input_layer(features, params['feature_columns'])
    for units in params['hidden_units']:
        net = tf.layers.dense(net, units=units, activation=tf.nn.relu)

    # Compute logits (1 per class).
    logits = tf.layers.dense(net, params['n_classes'], activation=None)

    # Compute predictions.
    predicted_classes = tf.argmax(logits, 1)
    if mode == tf.estimator.ModeKeys.PREDICT:
        predictions = {
            'class_ids': predicted_classes[:, tf.newaxis],
            'probabilities': tf.nn.softmax(logits),
            'logits': logits,
        }
        return tf.estimator.EstimatorSpec(mode, predictions=predictions)

    # Compute loss.
    loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)

    # Compute evaluation metrics.
    accuracy = tf.metrics.accuracy(labels=labels,
                                   predictions=predicted_classes,
                                   name='acc_op')
    metrics = {'accuracy': accuracy}
    tf.summary.scalar('accuracy', accuracy[1])

    if mode == tf.estimator.ModeKeys.EVAL:
        return tf.estimator.EstimatorSpec(
            mode, loss=loss, eval_metric_ops=metrics)

    # Create training op.
    assert mode == tf.estimator.ModeKeys.TRAIN

    optimizer = tf.train.AdagradOptimizer(learning_rate=0.1)
    train_op = optimizer.minimize(loss, global_step=tf.train.get_global_step())
    return tf.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op)


def main(argv):
    args = parser.parse_args(argv[1:])

    # Fetch the data
    (train_x, train_y), (test_x, test_y) = iris_data.load_data()

    # Feature columns describe how to use the input.
    my_feature_columns = []
    for key in train_x.keys():
        my_feature_columns.append(tf.feature_column.numeric_column(key=key))

    # Build 2 hidden layer DNN with 10, 10 units respectively.
    classifier = tf.estimator.Estimator(
        model_fn=my_model,
        params={
            'feature_columns': my_feature_columns,
            # Two hidden layers of 10 nodes each.
            'hidden_units': [10, 10],
            # The model must choose between 3 classes.
            'n_classes': 3,
        })

    # Train the Model.
    classifier.train(
        input_fn=lambda:iris_data.train_input_fn(train_x, train_y, args.batch_size),
        steps=args.train_steps)

    # Evaluate the model.
    eval_result = classifier.evaluate(
        input_fn=lambda:iris_data.eval_input_fn(test_x, test_y, args.batch_size))

    print('\nTest set accuracy: {accuracy:0.3f}\n'.format(**eval_result))

    # Generate predictions from the model
    expected = ['Setosa', 'Versicolor', 'Virginica']
    predict_x = {
        'SepalLength': [5.1, 5.9, 6.9],
        'SepalWidth': [3.3, 3.0, 3.1],
        'PetalLength': [1.7, 4.2, 5.4],
        'PetalWidth': [0.5, 1.5, 2.1],
    }

    predictions = classifier.predict(
        input_fn=lambda:iris_data.eval_input_fn(predict_x,
                                                labels=None,
                                                batch_size=args.batch_size))

    for pred_dict, expec in zip(predictions, expected):
        template = ('\nPrediction is "{}" ({:.1f}%), expected "{}"')

        class_id = pred_dict['class_ids'][0]
        probability = pred_dict['probabilities'][class_id]

        print(template.format(iris_data.SPECIES[class_id],
                              100 * probability, expec))


if __name__ == '__main__':
    tf.logging.set_verbosity(tf.logging.INFO)
    tf.app.run(main)


运行premade_estimator.py结果如下:

D:\programming\machine_learning\models-master\samples\core\get_started>python premade_estimator.py
C:\Users\Anaconda3\lib\site-packages\h5py\__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.
  from ._conv import register_converters as _register_converters
Downloading data from http://download.tensorflow.org/data/iris_training.csv
8192/2194 [================================================================================================================] - 0s 0s/step
Downloading data from http://download.tensorflow.org/data/iris_test.csv
8192/573 [============================================================================================================================================================================================================================================================================================================================================================================================================================================] - 0s 0s/step
INFO:tensorflow:Using default config.
WARNING:tensorflow:Using temporary folder as model directory: C:\Users\AppData\Local\Temp\tmp5qeyrvn6
INFO:tensorflow:Using config: {'_model_dir': 'C:\\Users\\AppData\\Local\\Temp\\tmp5qeyrvn6', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true
graph_options {
  rewrite_options {
    meta_optimizer_iterations: ONE
  }
}
, '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_service': None, '_cluster_spec': <tensorflow.python.training.server_lib.ClusterSpec object at 0x000001D479D11A90>, '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1}
WARNING:tensorflow:From C:\Users\Anaconda3\lib\site-packages\tensorflow\python\framework\op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.
Instructions for updating:
Colocations handled automatically by placer.
INFO:tensorflow:Calling model_fn.
WARNING:tensorflow:From C:\Users\Anaconda3\lib\site-packages\tensorflow\python\feature_column\feature_column_v2.py:2703: to_float (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.cast instead.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Create CheckpointSaverHook.
INFO:tensorflow:Graph was finalized.
2019-04-14 20:54:40.320943: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Saving checkpoints for 0 into C:\Users\AppData\Local\Temp\tmp5qeyrvn6\model.ckpt.
INFO:tensorflow:loss = 241.21529, step = 1
INFO:tensorflow:global_step/sec: 464.203
INFO:tensorflow:loss = 19.586277, step = 101 (0.216 sec)
INFO:tensorflow:global_step/sec: 706.107
INFO:tensorflow:loss = 10.944989, step = 201 (0.142 sec)
INFO:tensorflow:global_step/sec: 618.935
INFO:tensorflow:loss = 7.979789, step = 301 (0.163 sec)
INFO:tensorflow:global_step/sec: 626.513
INFO:tensorflow:loss = 7.2976875, step = 401 (0.159 sec)
INFO:tensorflow:global_step/sec: 698.682
INFO:tensorflow:loss = 9.718931, step = 501 (0.144 sec)
INFO:tensorflow:global_step/sec: 640.209
INFO:tensorflow:loss = 4.3173347, step = 601 (0.155 sec)
INFO:tensorflow:global_step/sec: 713.584
INFO:tensorflow:loss = 7.0657053, step = 701 (0.140 sec)
INFO:tensorflow:global_step/sec: 742.719
INFO:tensorflow:loss = 5.1807976, step = 801 (0.137 sec)
INFO:tensorflow:global_step/sec: 737.24
INFO:tensorflow:loss = 5.4548182, step = 901 (0.134 sec)
INFO:tensorflow:Saving checkpoints for 1000 into C:\Users\AppData\Local\Temp\tmp5qeyrvn6\model.ckpt.
INFO:tensorflow:Loss for final step: 2.9431791.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Starting evaluation at 2019-04-14T12:54:44Z
INFO:tensorflow:Graph was finalized.
WARNING:tensorflow:From C:\Users\Anaconda3\lib\site-packages\tensorflow\python\training\saver.py:1266: checkpoint_exists (from tensorflow.python.training.checkpoint_management) is deprecated and will be removed in a future version.
Instructions for updating:
Use standard file APIs to check for files with this prefix.
INFO:tensorflow:Restoring parameters from C:\Users\AppData\Local\Temp\tmp5qeyrvn6\model.ckpt-1000
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Finished evaluation at 2019-04-14-12:54:45
INFO:tensorflow:Saving dict for global step 1000: accuracy = 0.93333334, average_loss = 0.064269036, global_step = 1000, loss = 1.9280711
INFO:tensorflow:Saving 'checkpoint_path' summary for global step 1000: C:\Users\AppData\Local\Temp\tmp5qeyrvn6\model.ckpt-1000

Test set accuracy: 0.933

INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Restoring parameters from C:\Users\AppData\Local\Temp\tmp5qeyrvn6\model.ckpt-1000
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.

Prediction is "Setosa" (99.6%), expected "Setosa"

Prediction is "Versicolor" (99.5%), expected "Versicolor"

Prediction is "Virginica" (99.0%), expected "Virginica"

20190414

相关文章

网友评论

      本文标题:机器学习实例——对鸢尾花的分类

      本文链接:https://www.haomeiwen.com/subject/aphewqtx.html