美文网首页
flume+kafka+Storm+mysql+ssm+高德地图

flume+kafka+Storm+mysql+ssm+高德地图

作者: weare_b646 | 来源:发表于2019-04-24 14:54 被阅读0次

    一、概述

    本篇文章主要介绍如何使用Storm + flume + Kafka 实现实时数据的计算,并且使用高德地图API实现热力图的展示。

    背景知识:

    在有些场合,我们需要了解当前人口的流动情况,比如,需要实时监控一些旅游景点旅客的密集程度,这时可以使用GPS定位系统将该区域内旅客的IP数据进行计算,但是GPS定位系统也有一定的缺点,不是每个旅客都会GPS功能,这时可以使用“信令”来获取个人定位信息。所谓“信令”就是每个手机会不是的向附近最近的基站发送定位信息,除非手机关机。相信每个人在做车旅游的时候每经过一个地方都会受到某个地区的短信,“某某城市欢迎你的来访”等信息,移动电信应用就是利用“信令”来监控每个的定位信息。(同时也可以看出大数据下个人隐私很难受到保护)。

    1. 项目架构

    image

    在这里我们使用了 flume来抽取日志数据,使用 Python 模拟数据。在经过 flume 将数据抽取到 Kafka 中,Strom 会实时消费数据,然后计算结果实时写入 MySQL数据库中,然后我们可以将结果送到后台应用中使用和可视化展示。

    2. 环境以及软件说明

    • storm-0.9.7
    • zookeeper-3.4.5
    • flume
    • kafka_2.11-0.9.0.0

    二、实战

    1. 模拟数据

    #coding=UTF-8
    
    import random
    import time
    
    phone=[
        "13869555210",
        "18542360152",
        "15422556663",
        "18852487210",
        "13993584664",
        "18754366522",
        "15222436542",
        "13369568452",
        "13893556666",
        "15366698558"
    ]
    
    location=[
        "116.191031, 39.988585",
        "116.389275, 39.925818",
        "116.287444, 39.810742",
        "116.481707, 39.940089",
        "116.410588, 39.880172",
        "116.394816, 39.91181",
        "116.416002, 39.952917"
    ]
    
    def sample_phone():
        return random.sample(phone,1)[0]
    def sample_location():
        return random.sample(location, 1)[0]
    
    def generator_log(count=10):
        time_str=time.strftime("%Y-%m-%d %H:%M:%S",time.localtime())
        f=open("/opt/log.txt","a+")
        while count>=1:
            query_log="{phone}\t{location}\t{date}".format(phone=sample_phone(),location=sample_location(),date=time_str)
            f.write(query_log+"\n")
         #   print query_log
            count=count-1
    
    if __name__=='__main__':
        generator_log(100)
    
    

    2. Flume 配置

    在Flume安装目录下添加配置文件 storm_pro.conf:

    agent.sources = s1                                                                                                                  
    agent.channels = c1                                                                                                                 
    agent.sinks = k1                                                                                                                    
    
    agent.sources.s1.type=exec                                                                                                          
    agent.sources.s1.command=tail -F /opt/log.txt                                                                               
    agent.sources.s1.channels=c1                                                                                                        
    agent.channels.c1.type=memory                                                                                                       
    agent.channels.c1.capacity=10000                                                                                                    
    agent.channels.c1.transactionCapacity=100                                                                                           
    
    #设置Kafka接收器                                                                                                                    
    agent.sinks.k1.type= org.apache.flume.sink.kafka.KafkaSink                                                                          
    #设置Kafka的broker地址和端口号                                                                                                      
    agent.sinks.k1.brokerList=hadoop01:9092,hadoop02:9092,hadoop03:9092                                                                                               
    #设置Kafka的Topic                                                                                                                   
    agent.sinks.k1.topic=storm_kafka                                                                                                     
    #设置序列化方式                                                                                                                     
    agent.sinks.k1.serializer.class=kafka.serializer.StringEncoder                                                                      
    agent.sinks.k1.channel=c1
    
    

    注意:上面配置中path指定读取数据的文件,可自行创建。topic_id 参数为下文kafka中需要创建的 topic主题。

    bin/flume-ng agent -n agent -c conf -f conf/storm_pro.conf -Dflume.root.logger=INFO,console
    
    

    maven

    <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
             xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
        <modelVersion>4.0.0</modelVersion>
        <groupId>storm-kafka-mysql</groupId>
        <artifactId>storm-kafka-mysql</artifactId>
        <version>0.0.1-SNAPSHOT</version>
        <packaging>jar</packaging>
        <name>storm-kafka-mysql</name>
        <description />
        <properties>
            <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
        </properties>
        <dependencies>
            <dependency>
                <groupId>javax</groupId>
                <artifactId>javaee-api</artifactId>
                <version>8.0</version>
                <scope>provided</scope>
            </dependency>
            <dependency>
                <groupId>org.glassfish.web</groupId>
                <artifactId>javax.servlet.jsp.jstl</artifactId>
                <version>1.2.2</version>
            </dependency>
    
            <dependency>
                <groupId>org.apache.storm</groupId>
                <artifactId>storm-core</artifactId>
                <version>0.9.5</version>
                <!--<scope>provided</scope>-->
            </dependency>
    
            <dependency>
                <groupId>org.apache.storm</groupId>
                <artifactId>storm-kafka</artifactId>
                <version>0.9.5</version>
                <!--<scope>provided</scope>-->
            </dependency>
    
            <dependency>
                <groupId>org.apache.kafka</groupId>
                <artifactId>kafka_2.11</artifactId>
                <version>0.8.2.0</version>
                <exclusions>
                    <exclusion>
                        <groupId>org.apache.zookeeper</groupId>
                        <artifactId>zookeeper</artifactId>
                    </exclusion>
                    <exclusion>
                        <groupId>log4j</groupId>
                        <artifactId>log4j</artifactId>
                    </exclusion>
                </exclusions>
            </dependency>
            <dependency>
                <groupId>mysql</groupId>
                <artifactId>mysql-connector-java</artifactId>
                <version>5.1.31</version>
            </dependency>
    
        </dependencies>
        <build>
            <plugins>
                <plugin>
                    <artifactId>maven-compiler-plugin</artifactId>
                    <version>2.3.2</version>
                    <configuration>
                        <source>1.7</source>
                        <target>1.7</target>
                    </configuration>
                </plugin>
                <!--<plugin>-->
                <!--<artifactId>maven-war-plugin</artifactId>-->
                <!--<version>2.2</version>-->
                <!--<configuration>-->
                <!--<version>3.1</version>-->
                <!--<failOnMissingWebXml>false</failOnMissingWebXml>-->
                <!--</configuration>-->
                <!--</plugin>-->
            </plugins>
        </build>
    </project>
    
    

    4. Strom程序编写

    package com.neusoft;
    
    import java.util.Arrays;
    
    import storm.kafka.BrokerHosts;
    import storm.kafka.KafkaSpout;
    import storm.kafka.SpoutConfig;
    import storm.kafka.StringScheme;
    import storm.kafka.ZkHosts;
    import backtype.storm.Config;
    import backtype.storm.LocalCluster;
    import backtype.storm.StormSubmitter;
    import backtype.storm.generated.AlreadyAliveException;
    import backtype.storm.generated.InvalidTopologyException;
    import backtype.storm.spout.SchemeAsMultiScheme;
    import backtype.storm.topology.TopologyBuilder;
    public class MyKafkaTopology {
    
         public static void main(String[] args) throws AlreadyAliveException, InvalidTopologyException, InterruptedException {
              String zks = "hadoop01:2181,hadoop02:2181,hadoop03:2181";
              String topic = "storm_kafka";
             // String zkRoot = "/opt/modules/app/zookeeper/zkdata"; // default zookeeper root configuration for storm
              String id = "wordtest";
    
              BrokerHosts brokerHosts = new ZkHosts(zks);
              SpoutConfig spoutConf = new SpoutConfig(brokerHosts, topic, "", id);
              spoutConf.scheme = new SchemeAsMultiScheme(new StringScheme());
              spoutConf.forceFromStart = false;
              spoutConf.zkServers = Arrays.asList(new String[] {"hadoop01", "hadoop02", "hadoop03"});
              spoutConf.zkPort = 2181;
    
              TopologyBuilder builder = new TopologyBuilder();
              builder.setSpout("kafka-reader", new KafkaSpout(spoutConf), 2); // Kafka我们创建了一个2分区的Topic,这里并行度设置为2
              builder.setBolt("print-bolt", new PrintBolt(), 2).shuffleGrouping("kafka-reader");
    
              Config conf = new Config();
              String name = MyKafkaTopology.class.getSimpleName();
              if (args != null && args.length > 0) {
                   // Nimbus host name passed from command line
                   conf.put(Config.NIMBUS_HOST, args[0]);
                   conf.setNumWorkers(3);
                   StormSubmitter.submitTopologyWithProgressBar(name, conf, builder.createTopology());
              } 
              else {
                   conf.setMaxTaskParallelism(1);
                   LocalCluster cluster = new LocalCluster();
                   cluster.submitTopology(name, conf, builder.createTopology());
    //               Thread.sleep(60000);
    //               cluster.killTopology(name);
    //               cluster.shutdown();
    
    //               StormSubmitter.submitTopology(name, conf, builder.createTopology());
              }
         }
    }
    
    
    package com.neusoft;
    import java.sql.DriverManager;
            import java.sql.PreparedStatement;
            import java.sql.SQLException;
            import java.sql.Statement;
            import java.util.Date;
    
            import org.apache.commons.logging.Log;
            import org.apache.commons.logging.LogFactory;
    
            import com.mysql.jdbc.Connection;
    
            import backtype.storm.topology.BasicOutputCollector;
            import backtype.storm.topology.OutputFieldsDeclarer;
            import backtype.storm.topology.base.BaseBasicBolt;
            import backtype.storm.tuple.Fields;
            import backtype.storm.tuple.Tuple;
            import backtype.storm.tuple.Values;
    
    public class PrintBolt extends BaseBasicBolt {
    
        public static final Log log = LogFactory.getLog(PrintBolt.class);
    
        public static final long serialVersionUID = 1L;
    
        public static int count = 0;
        public static Connection con;
        static {
            try {
                con = (Connection) DriverManager.getConnection("jdbc:mysql://192.168.47.244:3306/storm", "root", "root");
            } catch (SQLException e) {
                e.printStackTrace();
            }
        }
    
        @Override
        public void execute(Tuple input, BasicOutputCollector collector) {
            //获取上一个组件所声明的Field
            //String print = input.getStringByField("print");
            count++;
            String print = input.getString(0);
    //      log.info("【print】: " + print);
            String[] arr = print.split("\\t");
            System.out.println("Name of input word is : " + print);
            //保存到mysql
            String driver = "com.mysql.jdbc.Driver";
            try {
                Class.forName(driver);
    
                String sql = "insert into location (time,latitude,longitude) values(?,?,?)";
                PreparedStatement pst =  con.prepareStatement(sql);
                System.out.println(pst);
                //调用pst对象set方法,设置问号占位符上的参数
                Date date = new Date();
                pst.setLong(1, date.getTime());
                pst.setDouble(2, Double.parseDouble(arr[1].split(",")[1]));
                pst.setDouble(3, Double.parseDouble(arr[1].split(",")[0]));
                pst.executeUpdate();
    
            } catch (ClassNotFoundException | SQLException e) {
                // TODO Auto-generated catch block
                e.printStackTrace();
            }
            //进行传递给下一个bolt
            //collector.emit(new Values(print));
            System.out.println(count);
        }
    
        @Override
        public void declareOutputFields(OutputFieldsDeclarer declarer) {
            //declarer.declare(new Fields("write"));
        }
    
    }
    
    

    5. 数据库的设计

    create database storm;
    
    use storm;
    
    create table location(
    time bigint,
    latitude double,
    longitude double
    )charset utf8;
    
    

    6. 集群的启动

    首先启动kafka(注意:需要启动ZK)。

    启动kafka:

    nohup bin/kafka-server-start.sh config/server.properties &
    
    

    创建topic:

    bin/kafka-topics.sh --create --zookeeper hadoop-senior.shinelon.com:2181 --replication-factor 1 --partitions 1 -- 
        topic storm_kafka
    
    

    注意:topic名称和flume中配置的必须一致。

    启动flume:

    在启动kafka和flume之后就可以启动 Storm,接着可以运行python数据模拟器,就会看到数据库中存入了计算结果:

    image

    三、数据可视化展示

    可视化结果如下图所示:

    image

    前端页面如下:

    <%--
      Created by IntelliJ IDEA.
      User: ttc
      Date: 2018/7/6
      Time: 14:06
      To change this template use File | Settings | File Templates.
    --%>
    <%@ page contentType="text/html;charset=UTF-8" language="java" %>
    <!DOCTYPE html>
    <html lang="en">
    <head>
      <meta charset="UTF-8"/>
      <title>高德地图</title>
      <link rel="stylesheet" href="http://cache.amap.com/lbs/static/main1119.css"/>
    </head>
    <body>
    <script src="https://cdn.bootcss.com/echarts/4.1.0.rc2/echarts.min.js"></script>
    <script src="https://cdn.bootcss.com/jquery/3.3.1/jquery.min.js"></script>
    <script src="http://webapi.amap.com/maps?v=1.4.9&amp;key=d16808eab90b7545923a1c2f4bb659ef"></script>
    <div id="container"></div>
    
    <script>
        var map = new AMap.Map("container", {
            resizeEnable: true,
            center: [116.418261, 39.921984],
            zoom: 11
        });
    
        var heatmap;
        var points =(function a(){  //<![CDATA[
            var city=[];
            $.ajax({
                type:"POST",
                url:"../get_map",
                dataType:'json',
                async:false,        //
                success:function(result){
                    for(var i=0;i<result.length;i++){
                        //alert("调用了");
                        city.push({"lng":result[i].longitude,"lat":result[i].latitude,"count":result[i].count});
                    }
    
                }
            })
            return city;
        })();//]]>
    
    //    var points =[
    //     {"lng":116.191031,"lat":39.988585,"count":1000},
    //     {"lng":116.389275,"lat":39.925818,"count":110},
    //     {"lng":116.287444,"lat":39.810742,"count":1200},
    //     {"lng":116.481707,"lat":39.940089,"count":130},
    //     {"lng":116.410588,"lat":39.880172,"count":140},
    //     {"lng":116.394816,"lat":39.91181,"count":15552},
    //     {"lng":116.416002,"lat":39.952917,"count":16}
    //
    //
    //     ];
    
        map.plugin(["AMap.Heatmap"],function() {      //加载热力图插件
            heatmap = new AMap.Heatmap(map,{
                raduis:50,
                opacity:[0,0.7]
            });    //在地图对象叠加热力图
            heatmap.setDataSet({data:points,max:100}); //设置热力图数据集
            //具体参数见接口文档
        });
    
        // var map = new AMap.Map('container', {
        //    pitch:75, // 地图俯仰角度,有效范围 0 度- 83 度
        //    viewMode:'3D' // 地图模式
        //});
    </script>
    
    </body>
    </html>
    
    

    SpringMvc DAO层代码如下:

    
    package com.neusoft.mapper;
    import java.sql.Connection;
    import java.sql.PreparedStatement;
    import java.sql.ResultSet;
    import java.util.ArrayList;
    
    import java.util.List;
    
    import com.neusoft.util.MysqlUtil;
    import org.springframework.stereotype.Component;
    
    @Component
    public class LocationDao {
    
        private static MysqlUtil mysqlUtil;
    
        public List<Location> map() throws Exception{
            List<Location> list = new ArrayList<Location>();
            Connection connection=null;
            PreparedStatement psmt=null;
            try {
                connection = MysqlUtil.getConnection();
                psmt = connection.prepareStatement("select latitude,longitude,count(*) from location where "
                        + "time>unix_timestamp(date_sub(current_timestamp(),interval 10 minute))*1000 "
                        + "group by longitude,latitude");
                ResultSet resultSet = psmt.executeQuery();
                while (resultSet.next()) {
                    Location location = new Location();
                    location.setLongitude(resultSet.getDouble(1));
                    location.setLatitude(resultSet.getDouble(2));
                    location.setCount(resultSet.getInt(3));
                    list.add(location);
                }
            }catch (Exception e){
                e.printStackTrace();
            }finally {
                MysqlUtil.release();
            }
            return list;
        }
    
    }
    
    

    实体类:

    
    public class Location {
        private Integer count;
        private double latitude;
        private double longitude;
    
        public Integer getCount() {
            return count;
        }
        public void setCount(Integer count) {
            this.count = count;
        }
        public double getLatitude() {
            return latitude;
        }
        public void setLatitude(double latitude) {
            this.latitude = latitude;
        }
        public double getLongitude() {
            return longitude;
        }
        public void setLongitude(double longitude) {
            this.longitude = longitude;
        }
    }
    
    

    工具类:

    package com.neusoft.util;
    
    import java.sql.Connection;
    import java.sql.DriverManager;
    import java.sql.PreparedStatement;
    import java.sql.ResultSet;
    
    public class MysqlUtil {
        private static final String DRIVER_NAME="jdbc:mysql://192.168.47.244:3306/storm?user=root&password=root";
        private static Connection connection;
        private static PreparedStatement pstm;
        private static ResultSet resultSet;
    
        public static Connection getConnection(){
            try {
                Class.forName("com.mysql.jdbc.Driver");
                connection=DriverManager.getConnection(DRIVER_NAME);
            }catch (Exception e){
                e.printStackTrace();
            }
            return connection;
        }
        public static void release(){
            try {
                if(resultSet!=null) {
                    resultSet.close();
                }
                if (pstm != null) {
                    pstm.close();
                }
                if(connection!=null){
                    connection.close();
                }
            }catch (Exception e){
                e.printStackTrace();
            }finally {
                if(connection!=null){
                    connection=null;    //help GC
                }
            }
        }
    
    }
    
    

    Controller层:

    package com.neusoft.controller;
    
    import com.alibaba.fastjson.JSON;
    
    import com.neusoft.mapper.LocationDao;
    
    import org.springframework.stereotype.Controller;
    import org.springframework.web.bind.annotation.RequestMapping;
    import org.springframework.web.servlet.ModelAndView;
    
    import javax.servlet.http.HttpServletResponse;
    
    /**
     * Created by ttc on 2018/8/7.
     */
    @Controller
    public class HomeController {
    
        @RequestMapping("/")
        public ModelAndView home()
        {
            ModelAndView modelAndView = new ModelAndView();
    
            modelAndView.setViewName("index");
            return modelAndView;
        }
        @RequestMapping("/get_map")
         public void getMap(HttpServletResponse response) throws Exception{
            LocationDao locationDao = new LocationDao();
            String json = JSON.toJSONString(locationDao.map());
            response.getWriter().print(json);
        }
    }
    
    

    # centos6.9安装/升级到python2.7并安装pip

    https://www.cnblogs.com/harrymore/p/9024287.html

    记得同步centos和windows的时间。

    python生成动态数据脚本

    import random
    import os
    import sys
    import time
    import numpy as np
    
    def genertor():
        Point=[random.uniform(123.449169,123.458654),random.uniform(41.740567,41.743705)]
        arr = []
        for i in range(1, random.randint(0, 500)):
            bias = np.random.randn() * pow(10,-4)
        bias = round(bias,4)
            X = Point[0] + bias
            bias1 = np.random.randn() * pow(10,-4)
        bias1 = round(bias,4)
            Y = Point[1] + bias
        time_str=time.strftime("%Y-%m-%d %H:%M:%S",time.localtime())
            arr.append(['13888888888'+'\t',str(X)+',', str(Point[1])+'\t',time_str])
        return arr
    
    if __name__ == '__main__':
        path = sys.argv[1]
        if not os.path.isfile(path):
            open(path, 'w')
        with open(path,'a') as f:
            while True:
                arr = genertor()
                for i in range(len(arr)):
                    f.writelines(arr[i])
                    f.write('\n')
                time.sleep(5)
    
    

    sql改成间隔20秒

      psmt = connection.prepareStatement("select latitude,longitude,count(*) num from location where "
                        + "time>unix_timestamp(date_sub(current_timestamp(),interval 20 second))*1000 "
                        + "group by longitude,latitude");
    
    

    index.jsp改成定时器版

    <%--
      Created by IntelliJ IDEA.
      User: ttc
      Date: 2018/7/6
      Time: 14:06
      To change this template use File | Settings | File Templates.
    --%>
    <%@ page contentType="text/html;charset=UTF-8" language="java" %>
    <!DOCTYPE html>
    <html lang="en">
    <head>
      <meta charset="UTF-8"/>
      <title>高德地图</title>
      <link rel="stylesheet" href="http://cache.amap.com/lbs/static/main1119.css"/>
    </head>
    <body>
    <script src="https://cdn.bootcss.com/echarts/4.1.0.rc2/echarts.min.js"></script>
    <script src="https://cdn.bootcss.com/jquery/3.3.1/jquery.min.js"></script>
    <script src="http://webapi.amap.com/maps?v=1.4.9&amp;key=d16808eab90b7545923a1c2f4bb659ef"></script>
    <div id="container"></div>
    
    <script>
        var map = new AMap.Map("container", {
            resizeEnable: true,
            center: [123.453169, 41.742567],
            zoom: 17
        });
    
        var heatmap;
        map.plugin(["AMap.Heatmap"],function() {      //加载热力图插件
            heatmap = new AMap.Heatmap(map,{
                raduis:50,
                opacity:[0,0.7]
            });    //在地图对象叠加热力图
            //具体参数见接口文档
        });
        setInterval(function (args) {
            var points =(function a(){  //<![CDATA[
                var city=[];
                $.ajax({
                    type:"POST",
                    url:"../get_map",
                    dataType:'json',
                    async:false,        //
                    success:function(result){
                        for(var i=0;i<result.length;i++){
                            //alert("调用了");
                            city.push({"lng":result[i].longitude,"lat":result[i].latitude,"count":result[i].count});
                        }
    
                    }
                })
                return city;
            })();//]]>
            heatmap.setDataSet({data:points,max:100}); //设置热力图数据集
        },1000)
    
        // var map = new AMap.Map('container', {
        //    pitch:75, // 地图俯仰角度,有效范围 0 度- 83 度
        //    viewMode:'3D' // 地图模式
        //});
    </script>
    
    </body>
    </html>
    
    

    相关文章

      网友评论

          本文标题:flume+kafka+Storm+mysql+ssm+高德地图

          本文链接:https://www.haomeiwen.com/subject/asgjwqtx.html