美文网首页
猴子都能懂的Transformers

猴子都能懂的Transformers

作者: 那个大螺丝 | 来源:发表于2023-01-27 22:03 被阅读0次
🚚TRANSFORMERS🤖
  • 引入一些包,主要使用tensorflow '2.10.1'transformers '4.25.1'
import tensorflow as tf
import tensorflow_datasets as tfds
import numpy as np
import pandas as pd
from transformers import BertTokenizer, TFBertModel
  • 使用TFDS加载imdb_reviews数据集
# using TFDS dataset
# note: as_supervised converts dicts to tuples
imdb_train, ds_info = tfds.load(
    name="imdb_reviews", split="train", with_info=True, as_supervised=True
)
imdb_test = tfds.load(name="imdb_reviews", split="test", as_supervised=True)
  • 加载预训练模型bert-base-uncased ,用于创建Token
# Defining BERT tokenizer
# bert_name = 'bert-base-uncased'
bert_name = "bert-base-cased"
tokenizer = BertTokenizer.from_pretrained(
    bert_name,
    add_special_tokens=True,
    do_lower_case=False,
    max_length=150,
    pad_to_max_length=True,
)
  • 创建训练、测试集并序列化
def bert_encoder(review):
    txt = review.numpy().decode("utf-8")
    encoded = tokenizer.encode_plus(
        txt,
        add_special_tokens=True,
        max_length=150,
        pad_to_max_length=True,
        return_attention_mask=True,
        return_token_type_ids=True,
        truncation=True,
    )
    return encoded["input_ids"], encoded["token_type_ids"], encoded["attention_mask"]


bert_train = [bert_encoder(r) for r, l in imdb_train]
bert_lbl = [l for r, l in imdb_train]

bert_train = np.array(bert_train)

bert_lbl = tf.keras.utils.to_categorical(bert_lbl, num_classes=2)

# create training and validation splits
from sklearn.model_selection import train_test_split

x_train, x_val, y_train, y_val = train_test_split(
    bert_train, bert_lbl, test_size=0.2, random_state=42
)

tr_reviews, tr_segments, tr_masks = np.split(x_train, 3, axis=1)
val_reviews, val_segments, val_masks = np.split(x_val, 3, axis=1)


tr_reviews = tr_reviews.squeeze()
tr_segments = tr_segments.squeeze()
tr_masks = tr_masks.squeeze()

val_reviews = val_reviews.squeeze()
val_segments = val_segments.squeeze()
val_masks = val_masks.squeeze()


def example_to_features(input_ids, attention_masks, token_type_ids, y):
    return {
        "input_ids": input_ids,
        "attention_mask": attention_masks,
        "token_type_ids": token_type_ids,
    }, y


train_ds = (
    tf.data.Dataset.from_tensor_slices((tr_reviews, tr_masks, tr_segments, y_train))
    .map(example_to_features)
    .shuffle(100)
    .batch(16)
)

valid_ds = (
    tf.data.Dataset.from_tensor_slices((val_reviews, val_masks, val_segments, y_val))
    .map(example_to_features)
    .shuffle(100)
    .batch(16)
)

# prep data for testing
bert_test = [bert_encoder(r) for r, l in imdb_test]
bert_tst_lbl = [l for r, l in imdb_test]

bert_test2 = np.array(bert_test)
bert_tst_lbl2 = tf.keras.utils.to_categorical(bert_tst_lbl, num_classes=2)

ts_reviews, ts_segments, ts_masks = np.split(bert_test2, 3, axis=1)
ts_reviews = ts_reviews.squeeze()
ts_segments = ts_segments.squeeze()
ts_masks = ts_masks.squeeze()


test_ds = (
    tf.data.Dataset.from_tensor_slices(
        (ts_reviews, ts_masks, ts_segments, bert_tst_lbl2)
    )
    .map(example_to_features)
    .shuffle(100)
    .batch(16)
)

  • 加载预训练模型bert-base-cased用于创建模型
bert_name = "bert-base-cased"
bert = TFBertModel.from_pretrained(bert_name)

bert.summary()

max_seq_len = 150
inp_ids = tf.keras.layers.Input((max_seq_len,), dtype=tf.int64, name="input_ids")
att_mask = tf.keras.layers.Input((max_seq_len,), dtype=tf.int64, name="attention_mask")
seg_ids = tf.keras.layers.Input((max_seq_len,), dtype=tf.int64, name="token_type_ids")


inp_dict = {"input_ids": inp_ids, "attention_mask": att_mask, "token_type_ids": seg_ids}
outputs = bert(inp_dict)


x = tf.keras.layers.Dropout(0.2)(outputs[1])
x = tf.keras.layers.Dense(200, activation="relu")(x)
x = tf.keras.layers.Dropout(0.2)(x)
x = tf.keras.layers.Dense(2, activation="softmax")(x)

custom_model = tf.keras.models.Model(inputs=inp_dict, outputs=x)


# first train the new layers added
bert.trainable = False
optimizer = tf.keras.optimizers.Adam()  # standard learning rate
loss = tf.keras.losses.BinaryCrossentropy()  # from_logits=True)
custom_model.compile(
    optimizer=optimizer, loss="binary_crossentropy", metrics=["accuracy"]
)

print("Custom Model: training custom model on IMDB")
custom_history = custom_model.fit(train_ds, epochs=10, validation_data=valid_ds)


custom_model.evaluate(test_ds)
  • 仅训练新增层级的结果 accuracy: 0.6888
1563/1563 [==============================] - 100s 64ms/step - loss: 0.5908 - accuracy: 0.6888
# Now finetune BERT for a couple of epochs
bert.trainable = True
optimizer = tf.keras.optimizers.Adam(learning_rate=2e-5)
loss = tf.keras.losses.BinaryCrossentropy()  # from_logits=True)

custom_model.compile(optimizer=optimizer, loss=loss, metrics=["accuracy"])

custom_model.summary()

print("Custom Model: Fine-tuning BERT on IMDB")
custom_history = custom_model.fit(train_ds, epochs=2, validation_data=valid_ds)

custom_model.evaluate(test_ds)
  • 训练预训练集之后,结果为 accuracy: 0.8842
1563/1563 [==============================] - 99s 63ms/step - loss: 0.3170 - accuracy: 0.8842

代码传送门

相关文章

  • 猴子都能懂的GIT入门

  • 猴子都能懂的NLP(NER)

    创建一个简单的模型理解句子某些词的语义(NER) 加载一些包 加载标签和语句 在ner文件夹里面有一堆原始数据,每...

  • 猴子都能懂的NLP (NLU)

    唯一需要注意的地方是,需要接两层BiLstm 来对数据进行降一个维度。如果不降维,会导致输出的矩阵形状与预设值不一...

  • 前端资料链接

    猴子都能懂的GIT入门http://backlogtool.com/git-guide/cn/ bootstrap...

  • Git使用

    猴子都能懂的git https://backlog.com/git-tutorial/cn/ git常用指令 Gi...

  • 网站资料

    Git基础 Git教程-廖雪峰的官方网站 猴子都能懂的Git入门 git tag常用操作

  • Git

    [TOC] 1.git资料 猴子都能懂的GIT入门 Git魔法 闯过这 54 关,点亮你的 Git 技能树 Pro...

  • Git资料集

    Git这些高级用法,喜欢就拿去用 Git基础知识 Git廖雪峰 猴子都能懂的Git入门 git tag常用操作

  • Git 学习资源合集

    Git 学习资源合集 廖雪峰的 Git 教程 猴子都能懂的 Git 入门 git - 简明指南 阮一峰的常用 Gi...

  • 学习技术的基础能力(我胡写的)

    一、本人觉得在学习技术前需要掌握的一些技术和能力素质。 1.Git 廖雪峰Git教程 猴子都能懂的Git入门 2....

网友评论

      本文标题:猴子都能懂的Transformers

      本文链接:https://www.haomeiwen.com/subject/bdaehdtx.html