Description
A 3 x 3 magic square is a 3 x 3 grid filled with distinct numbers from 1 to 9 such that each row, column, and both diagonals all have the same sum.
Given an grid
of integers, how many 3 x 3 "magic square" subgrids are there? (Each subgrid is contiguous).
Example 1:
Input: [[4,3,8,4],
[9,5,1,9],
[2,7,6,2]]
Output: 1
Explanation:
The following subgrid is a 3 x 3 magic square:
438
951
276
while this one is not:
384
519
762
In total, there is only one magic square inside the given grid.
Note:
1 <= grid.length <= 10
1 <= grid[0].length <= 10
0 <= grid[i][j] <= 15
Solution
Iteration, O(n ^ 2), S(1)
没什么特别的办法,就是枚举3 * 3 grid的坐上坐标,然后计算当前grid isMagic。
class Solution {
public int numMagicSquaresInside(int[][] grid) {
if (grid == null || grid.length == 0 || grid[0].length == 0) {
return 0;
}
int m = grid.length;
int n = grid[0].length;
int count = 0;
for (int i = 0; i < m - 2; ++i) {
for (int j = 0; j < n - 2; ++j) {
if (isMagic(grid[i][j], grid[i][j + 1], grid[i][j + 2]
, grid[i + 1][j], grid[i + 1][j + 1], grid[i + 1][j + 2]
, grid[i + 2][j], grid[i + 2][j + 1], grid[i + 2][j + 2])) {
++count;
}
}
}
return count;
}
private boolean isMagic(int... vals) {
int[] count = new int[16]; // because 0 <= grid[i][j] <= 15
for (int v : vals) {
++count[v];
}
for (int v = 1; v <= 9; ++v) {
if (count[v] != 1) {
return false;
}
}
return vals[0] + vals[1] + vals[2] == 15
&& vals[3] + vals[4] + vals[5] == 15
&& vals[6] + vals[7] + vals[8] == 15
&& vals[0] + vals[3] + vals[6] == 15
&& vals[1] + vals[4] + vals[7] == 15
&& vals[2] + vals[5] + vals[8] == 15
&& vals[0] + vals[4] + vals[8] == 15
&& vals[2] + vals[4] + vals[6] == 15;
}
}
网友评论