美文网首页
Python计算栅格SPEI

Python计算栅格SPEI

作者: 单酒窝小可爱 | 来源:发表于2021-04-12 16:10 被阅读0次

    栅格尺度的SPEI采用python,主要是参照
    https://climate-indices.readthedocs.io/en/latest/
    该网站详细介绍了计算SPEI以及其他气候指数的过程,不懂的同学就先下载例子进行试验。

    第一步配置环境变量

    该python编译器是采用的Anaconda3,如果没有安装的童靴先安装,这里安装以及环境变量的配置步骤就省略了。

    接下来就是SPEI运行环境的配置了

    conda create -n indices_env python=3.6
    conda activate indices_env
    pip install climate-indices
    conda install -c conda-forge nco
    
    image.png

    在安装的Anaconda3的这里运行代码,每一次新打开运行之前都需要执行 conda activate indices_env

    第二步 数据处理

    该程序计算的原始数据格式为nc5,并且数据(以降水为例)为维度(第一维),经度(第二维),时间(第三维),如果数据不一样的话要进行处理。包括单位都要与例子的数据一致
    接下来以CMIP5数据为例进行数据处理,以下是处理了多个nc文件,一般情况下只有一个nc文件,我这里的数据是有多个

    import os
    from netCDF4 import Dataset
    import netCDF4 as nc
    import numpy as np
    import pandas as pd
    import datetime as dt
    import calendar
    
    input = r"E:\Paper\paper5\01-data\SPEI--RCP\OriginalData\Cal_SPEI_Th\pr\historical"
    output = r"E:\Paper\paper5\01-data\SPEI--RCP\OriginalDataDownScallingChangeUnit"
    def ReadData(filePath):
        with nc.Dataset(filePath) as file:
            file.set_auto_mask(False)
            variables = {x: file[x][()] for x in file.variables}
        return variables
    def WriteData(inputVariables,outputData,outputFilePath,variableName,variableUnits):
        newDataFile = nc.Dataset(outputFilePath, 'w', format='NETCDF4')
        #define dimensions
        long=newDataFile.createDimension('lon',size=length_lon)
        lati=newDataFile.createDimension('lat',size=length_lat)
        times=newDataFile.createDimension('time',size=length_time)
        #define variables
        lon=newDataFile.createVariable('lon','f8',dimensions='lon')
        lat=newDataFile.createVariable('lat','f8',dimensions='lat')
        time=newDataFile.createVariable('time','S10',dimensions='time')
        var=newDataFile.createVariable(variableName,'f8',dimensions=('lat','lon','time'))
        #add data to variables
        lon[:]=inputVariables['lon']
        lat[:]=inputVariables['lat']
        #time=inputVariables['time']
        var[...]=outputData
        timeRange=pd.date_range(dt.datetime(1850,1,1,0),dt.datetime(2005,12,1,0),freq='MS')
        for i in range(timeRange.shape[0]):
            time[i]=timeRange[i].strftime('%Y-%m-%d %H:%M')
            year = int(time[i][0:4])
            month = int(time[i][5:7])
            day_temp = calendar.monthrange(year,month)
            day = day_temp[1]
        #add attributes
        #global attributes
        newDataFile.times=time.shape[0]
        newDataFile.start_time=time[0]
        newDataFile.end_time = time[-1]
    
        ##variables attributes
        ###lon
        lon.units = "degrees_east"
        lon.long_name = "longitude"
        lon.standard_name = "longitude"
        lon.axis = "X"
        # lon.valid_min = 0.25
        # lon.valid_max = 359.75
        ###lat
        lat.units = "degrees_north"
        lat.long_name = "latitude"
        lat.standard_name = "latitude"
        lat.axis = "Y"
        # lat.valid_min =  -89.75
        # lat.valid_max = 89.75
    
        ###lwe
        var.units = variableUnits
        var.grid_mapping = "WGS84"
        var.coordinates = "lat lon time"
    
        ##close file
        newDataFile.close()
    def getDay():
        day=np.zeros(length_time)
        timeRange = pd.date_range(dt.datetime(1850, 1, 1, 0), dt.datetime(2005, 12, 1, 0), freq='MS')
        for i in range(timeRange.shape[0]):
            year = int(timeRange[i].strftime('%Y-%m-%d %H:%M')[0:4])
            month = int(timeRange[i].strftime('%Y-%m-%d %H:%M')[5:7])
            day_temp = calendar.monthrange(year,month)
            day[i] = day_temp[1]
        return day
    def datachange(filepath):
            variables = ReadData(filepath)
            var_data=variables['pr']
            a=np.swapaxes(var_data,2,0)
            b=np.swapaxes(a,0,1)
            day=getDay()
            b = b * day * 24 * 36 * 100  # 这里代表修改了原始数据的降水单位
            WriteData(variables, b, fileOutPath, 'pr', 'millimeter')
    filenames = os.listdir(input)
    for i in range (len(filenames)):
        filepath = input + "\\" + filenames[i]
        fileOutPath = output + "\\" + filenames[i]
        data = Dataset(filepath)
        # all_vars = data.variables.keys()  # 获取所有变量名称
        # all_vars_info = data.variables.items()  # 查看每一个变量的信息
        var2 = 'lat'
        var_info2 = data.variables[var2]
        length_lat = len(list(var_info2))
        # print(var_info2)
        var3 = 'lon'
        var_info3 = data.variables[var3]
        length_lon = len(list(var_info3))
        # print(var_info3)
        var4 = 'time'
        var_info4 = data.variables[var4]
        length_time = len(list(var_info4))
        datachange(filepath)
    

    计算PET

    上述数据处理好之后,就可以计算计算PET了
    PET通过这里的程序进行计算,只提供了两种计算方式,Thornthwaite和Hargreaves
    以Thornthwaite为例

    process_climate_indices --index pet --periodicity monthly --netcdf_temp E:/Paper/paper5/01-data/SPEI--RCP/OriginalDataDownScallingChangeUnit/tas/tas_Amon_CanESM2_rcp85_r1i1p1_200601-210012.nc --var_name_temp tas --output_file_base E:/Paper/paper5/01-data/SPEI--RCP/output_PET/CanESM2_rcp85 --multiprocessing all_but_one
    

    计算SPEI

    process_climate_indices --index spei --periodicity monthly --netcdf_precip E:/Paper/paper5/01-data/SPEI--RCP/OriginalDataDownScallingChangeUnit/pr/pr_Amon_CanESM2_rcp85_r1i1p1_200601-210012.nc --var_name_precip pre --netcdf_pet E:/Paper/paper5/01-data/SPEI--RCP/output_PET/CanESM2_rcp85_pet_thornthwaite.nc --var_name_pet pet_thornthwaite --output_file_base E:/Paper/paper5/01-data/SPEI--RCP/output_SPEI/CanESM2_rcp85 --scales 1 3 6 12  --calibration_start_year 2006 --calibration_end_year 2100 --multiprocessing all
    
    image.png

    上面的计算步骤需要修改路径和变量名称,见图片上说明

    批量处理

    上面的计算过程只是针对单个的文件,但是如果有多个nc文件需要计算SPEI,就可以采用以下程序,将以下程序复制保存成bat文件,然后将bat文件拖进Anaconda Prompt里运行即可

    echo off
    setlocal enabledelayedexpansion
    for %%i in (E:\Paper\paper5\01-data\SPEI--RCP\OriginalDataDownScallingChangeUnit\tas\*.nc) do (
    set file=%%~ni
    echo %%~ni
    echo !file:~3!
    set outputfile=E:\Paper\paper5\01-data\SPEI--RCP\output_PET1\pet!file:~3!
    echo !outputfile!
    process_climate_indices --index pet --periodicity monthly --netcdf_temp %%i --var_name_temp tas --output_file_base !outputfile!  --multiprocessing all_but_one
    
    echo off
    setlocal enabledelayedexpansion
    for %%i in (E:\Paper\paper5\01-data\SPEI--RCP\OriginalDataDownScallingChangeUnit\pr\*.nc) do (
    set prfile=%%i 
    set prfilename=%%~ni
    set petfile=E:\Paper\paper5\01-data\SPEI--RCP\output_PET1\pet!prfilename:~2!_pet_thornthwaite.nc
    set outputfile=E:\Paper\paper5\01-data\SPEI--RCP\output_SPEI1\spei!prfilename:~2!
    echo !prfile!
    echo !petfile!
    echo !outputfile!
    process_climate_indices --index spei --periodicity monthly --netcdf_precip !prfile! --var_name_precip pre --netcdf_pet !petfile! --var_name_pet pet_thornthwaite --output_file_base !outputfile! --scales 1 3 6 12  --calibration_start_year 2006 --calibration_end_year 2100 --multiprocessing all
         )
    

    相关文章

      网友评论

          本文标题:Python计算栅格SPEI

          本文链接:https://www.haomeiwen.com/subject/bruxlltx.html