美文网首页
最强Elasticsearch入门相关概念

最强Elasticsearch入门相关概念

作者: Binary_r | 来源:发表于2021-03-03 09:38 被阅读0次

    1、ES是如何产生的?

    (1)思考:大规模数据如何检索?

    如:当系统数据量上了10亿、100亿条的时候,我们在做系统架构的时候通常会从以下角度去考虑问题:
    1)用什么数据库好?(mysql、sybase、oracle、达梦、神通、mongodb、hbase…)
    2)如何解决单点故障;(lvs、F5、A10、Zookeep、MQ)
    3)如何保证数据安全性;(热备、冷备、异地多活)
    4)如何解决检索难题;(数据库代理中间件:mysql-proxy、Cobar、MaxScale等;)
    5)如何解决统计分析问题;(离线、近实时)

    (2)传统数据库的应对解决方案

    对于关系型数据,我们通常采用以下或类似架构去解决查询瓶颈和写入瓶颈:
    解决要点:
    1)通过主从备份解决数据安全性问题;
    2)通过数据库代理中间件心跳监测,解决单点故障问题;
    3)通过代理中间件将查询语句分发到各个slave节点进行查询,并汇总结果


    image.png

    2、ES介绍

    Elasticsearch 是一个分布式可扩展的实时搜索和分析引擎.Elasticsearch也使用Java开发并使用Apache Lucene作为其核心来实现所有索引和搜索的功能,但是它的目的是通过简单的RESTful API来隐藏Lucene的复杂性,从而让全文搜索变得简单,它不仅包括了全文搜索功能,还可以进行以下工作:

    • 分布式实时文件存储,并将每一个字段都编入索引,使其可以被搜索。
    • 实时分析的分布式搜索引擎。
    • 可以扩展到上百台服务器,处理PB级别的结构化或非结构化数据。

    基本概念
    先说Elasticsearch的文件存储,Elasticsearch是面向文档型数据库,一条数据在这里就是一个文档,用JSON作为文档序列化的格式

    用MySQL的关系来说明ES的存储

    索引(indices)--------------------------------Databases 数据库
    类型(type)-----------------------------Table 数据表
    文档(Document)----------------Row 行
    字段(Field)-------------------Columns 列

    3、ES核心概念

    1)Cluster:集群。

    ES可以作为一个独立的单个搜索服务器。不过,为了处理大型数据集,实现容错和高可用性,ES可以运行在许多互相合作的服务器上。这些服务器的集合称为集群。

    2)Node:节点。

    形成集群的每个服务器称为节点。

    3)Shard:分片。

    当有大量的文档时,由于内存的限制、磁盘处理能力不足、无法足够快的响应客户端的请求等,一个节点可能不够。这种情况下,数据可以分为较小的分片。每个分片放到不同的服务器上。
    当你查询的索引分布在多个分片上时,ES会把查询发送给每个相关的分片,并将结果组合在一起,而应用程序并不知道分片的存在。即:这个过程对用户来说是透明的。

    4)Replia:副本。

    为提高查询吞吐量或实现高可用性,可以使用分片副本。
    副本是一个分片的精确复制,每个分片可以有零个或多个副本。ES中可以有许多相同的分片,其中之一被选择更改索引操作,这种特殊的分片称为主分片。
    当主分片丢失时,如:该分片所在的数据不可用时,集群将副本提升为新的主分片。

    5)全文检索。

    全文检索就是对一篇文章进行索引,可以根据关键字搜索,类似于mysql里的like语句。
    全文索引就是把内容根据词的意义进行分词,然后分别创建索引,例如”你们的激情是因为什么事情来的” 可能会被分词成:“你们“,”激情“,“什么事情“,”来“ 等关键词,这样当你搜索“你们” 或者 “激情” 都会把这句搜出来。

    4、倒排索引

    也常被称为反向索引、置入档案或反向档案,是一种索引方法,被用来存储在全文搜索下某个单词在一个文档或者一组文档中的存储位置的映射。它是文档检索系统中最常用的数据结构。通过倒排索引,可以根据单词快速获取包含这个单词的文档列表。倒排索引主要由两个部分组成:“单词词典”和“倒排文件”

    推荐一个链接:
    https://developer.51cto.com/art/201904/594615.htm

    5、ES国内外使用优秀案例

    1) 2013年初,GitHub抛弃了Solr,采取ElasticSearch 来做PB级的搜索。 “GitHub使用ElasticSearch搜索20TB的数据,包括13亿文件和1300亿行代码”。
    2)维基百科:启动以elasticsearch为基础的核心搜索架构。
    3)SoundCloud:“SoundCloud使用ElasticSearch为1.8亿用户提供即时而精准的音乐搜索服务”。
    4)百度:百度目前广泛使用ElasticSearch作为文本数据分析,采集百度所有服务器上的各类指标数据及用户自定义数据,通过对各种数据进行多维分析展示,辅助定位分析实例异常或业务层面异常。

    相关文章

      网友评论

          本文标题:最强Elasticsearch入门相关概念

          本文链接:https://www.haomeiwen.com/subject/bstqqltx.html