美文网首页
MapReduce实现‘多表关联’

MapReduce实现‘多表关联’

作者: VVictoriaLee | 来源:发表于2017-08-16 15:19 被阅读0次

    多表关联和单表关联相似,都类似于数据库中的自然连接。相比单表关联,多表关联的左右表和连接列更加清楚。所以可以采用和单表关联的相同的处理方式,map识别出输入的行属于哪个表之后,对其进行分割,将连接的列值保存在key中,另一列和左右表标识保存在value中,然后输出。reduce拿到连接结果之后,解析value内容,根据标志将左右表内容分开存放,然后求笛卡尔积,最后直接输出。


    输入是两个文件,一个代表工厂表,包含工厂名列地址编号列

    image.png

    另一个代表地址表,包含地址编号列地址名列

    image.png
    期望输出: image.png

    完整代码:

    package mr;
    
    import java.io.IOException;
    import java.net.URI;
    import java.util.ArrayList;
    import java.util.Iterator;
    import java.util.List;
    
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.FileSystem;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.Mapper;
    import org.apache.hadoop.mapreduce.Reducer;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;   
    
    public class MyAddress {
        
        
        
        static class MyAddressMapper  extends  Mapper<LongWritable, Text, Text, Text>{  
            
             public void map(LongWritable k1, Text v1, Context context) 
                             throws java.io.IOException, java.lang.InterruptedException
             {
                String[]  lines= v1.toString().split("\t");
                if(lines[0].equals("factoryname") || lines[0].equals("addressID")) return;
                String word1=lines[0];
                String word2=lines[1];
                
                if(word1.charAt(0)>='0'&&word1.charAt(0)<='9'){
                    context.write(new Text(word1), new Text("1"+","+word1+","+word2));
                }
                else if(word2.charAt(0)>='0'&&word2.charAt(0)<='9'){
                    context.write(new Text(word2), new Text("2"+","+word1+","+word2));
                }
                else return;
                
            System.out.println("map......"+word1+","+word2);
             }
            
        }
        
        static class  MyAddressReduce extends Reducer<Text, Text, Text, Text>{
            
            protected void setup(Context context) 
                    throws java.io.IOException, java.lang.InterruptedException{
                context.write(new Text("factory\t"),new Text("address"));
            }
            
             public void reduce(Text key, Iterable<Text> values, Context context) throws java.io.IOException, java.lang.InterruptedException
             {
                 List<String> fname=new ArrayList();
                 List<String> aname=new ArrayList();
                 
                 Iterator<Text>  it=values.iterator();
                 while(it.hasNext()){
                    String lines=it.next().toString();
                    String[] words=lines.split(",");
                    if(words[0].equals("1")){
                        aname.add(words[2]);
                    }
                    else if(words[0].equals("2")){
                        fname.add(words[1]);
                    }
                    else return;
                 }
                 for(String fn:fname){
                     for(String an:aname){
                         context.write(new Text(fn+"\t"), new Text(an));
                     }
                 }
                     
                 
                 System.out.println("reduce......");
             }
                
        }
    
        private static String INPUT_PATH="hdfs://master:9000/input/fname.txt";
        private static String INPUT_PATH2="hdfs://master:9000/input/aname.txt";
        private static String OUTPUT_PATH="hdfs://master:9000/output/MyAddressResult/";
    
        public static void main(String[] args) throws Exception {   
            
            Configuration  conf=new Configuration();
            FileSystem  fs=FileSystem.get(new URI(OUTPUT_PATH),conf);
         
            if(fs.exists(new Path(OUTPUT_PATH)))
                    fs.delete(new Path(OUTPUT_PATH));
            
            Job  job=new Job(conf,"myjob");
            
            job.setJarByClass(MyAddress.class);
            job.setMapperClass(MyAddressMapper.class);
            job.setReducerClass(MyAddressReduce.class);
             
            job.setOutputKeyClass(Text.class);
            job.setOutputValueClass(Text.class);
            
             
            
            FileInputFormat.addInputPath(job,new Path(INPUT_PATH));
            FileInputFormat.addInputPath(job,new Path(INPUT_PATH2));
            FileOutputFormat.setOutputPath(job, new Path(OUTPUT_PATH));
            
            job.waitForCompletion(true);
    
        }
    
    }
    
    

    代码理解参照《MapReduce实现‘单表关联’

    相关文章

      网友评论

          本文标题:MapReduce实现‘多表关联’

          本文链接:https://www.haomeiwen.com/subject/bwuirxtx.html