美文网首页
泰坦尼克-kaggle

泰坦尼克-kaggle

作者: d33911380280 | 来源:发表于2016-11-19 22:18 被阅读109次

1.导入数据

2.可视化数据

3.清洗、转换数据

4.对数据编码

5.拆分训练集和测试集

6.进行学习

7.验证

8.预测

1.导入数据


Paste_Image.png Paste_Image.png

2.可视化

Paste_Image.png Paste_Image.png

可见在c处登船的成活率最高,女性普遍比男性高。

Paste_Image.png Paste_Image.png

发现社会地位高,存活率高。

3.数据清洗

#转化数据
#分组
def simplify_ages(df):
    df.Age=df.Age.fillna(-0.5)
    bins=(-1,0,5,12,18,25,35,60,120)
    group_names=['Unknown','baby','child','teenager','student','young adult','adult','senior']
    categories=pd.cut(df.Age,bins,labels=group_names)
    df.Age=categories
    return df
#取第一个字母    
def simplify_cabins(df):
     df.Cabin=df.Cabin.fillna('N')
     df.Cabin=df.Cabin.apply(lambda x:x[0])
     return df
#分组
def simplify_fares(df):
    df.Fare=df.Fare.fillna(-0.5)
    bins=(-1,0,8,15,31,1000)
    group_names=['Unknown','0.25','05','0.75','1']
    categories=pd.cut(df.Fare,bins,labels=group_names)
    df.Fare=categories
    return df     
#对名字改变    
def format_name(df):
     df['Lname'] = df.Name.apply(lambda x: x.split(' ')[0])
     df['NamePrefix'] = df.Name.apply(lambda x: x.split(' ')[1])
     return df
     
#删除无用字段     
def drop_features(df):
     return df.drop(['Ticket','Name','Embarked'],axis=1)
    
def transform_features(df):
    df = simplify_ages(df)
    df = simplify_cabins(df)
    df = simplify_fares(df)
    df = format_name(df)
    df = drop_features(df)
    return df
    
data_train = transform_features(data_train)
data_test = transform_features(data_test)
data_train.head()    
Paste_Image.png

继续进行处理后数据的可视化

Paste_Image.png Paste_Image.png Paste_Image.png Paste_Image.png

男性低年龄段存活率高,女性高年龄段存活率高。票价越高存活率越高。

4 对数据编码

from sklearn import preprocessing
def encode_features(df_train, df_test):
    features = ['Fare', 'Cabin', 'Age', 'Sex', 'Lname', 'NamePrefix']
    df_combined = pd.concat([df_train[features], df_test[features]])
    
    for feature in features:
        le = preprocessing.LabelEncoder()
        le = le.fit(df_combined[feature])
        df_train[feature] = le.transform(df_train[feature])
        df_test[feature] = le.transform(df_test[feature])
    return df_train, df_test
    
data_train, data_test = encode_features(data_train, data_test)
data_train.head()
Paste_Image.png

5.选取测试集与训练集

from sklearn.model_selection import train_test_split

x_all=data_train.drop(['Survived', 'PassengerId'], axis=1)
y_all=data_train['Survived']

num_test=0.2
x_train,x_test,y_train,y_test=train_test_split(x_all,y_all,test_size=num_test,random_state=23)

6.拟合、演算

from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import make_scorer, accuracy_score
from sklearn.grid_search import GridSearchCV

# 选择分类器. 
clf = RandomForestClassifier()

# 尝试的参数
parameters = {'n_estimators': [4, 6, 9], 
              'max_features': ['log2', 'sqrt','auto'], 
              'criterion': ['entropy', 'gini'],
              'max_depth': [2, 3, 5, 10], 
              'min_samples_split': [2, 3, 5],
              'min_samples_leaf': [1,5,8]
             }

# 设置scoring参数
acc_scorer = make_scorer(accuracy_score)

# 运行格网搜索
grid_obj = GridSearchCV(clf, parameters, scoring=acc_scorer)
grid_obj = grid_obj.fit(x_train, y_train)

# 将分类器设置为估计效果最好
clf = grid_obj.best_estimator_

# 最好效果的拟合 
clf.fit(x_train, y_train)

#预测结果
predictions = clf.predict(x_test)
print(accuracy_score(y_test, predictions))
Paste_Image.png

7.进行交叉检验

Paste_Image.png

8.预测

Paste_Image.png

相关文章

网友评论

      本文标题: 泰坦尼克-kaggle

      本文链接:https://www.haomeiwen.com/subject/cddepttx.html