美文网首页iOS开发之底层
[iOS] 类的加载(上)

[iOS] 类的加载(上)

作者: 沉江小鱼 | 来源:发表于2021-01-13 15:00 被阅读0次

    1. 类的加载

    在之前了解了dyldobjc是如何关联的,本文主要是理解类的相关信息是如何加载到内存的,其中重点关注的是 map_imagesload_images

    • map_images
      主要是管理文件中和动态库中的所有符号,即 class protocol selector category
    • load_images
      加载执行 load 方法

    其中代码通过编译,读取到Mach-O可执行文件中,再从Mach-O中读取到内存,如下图所示:

    image.png
    1.1 map_images:加载镜像文件到内存

    在查看源码之前,这里说一下为什么map_images&,而 load_images没有?

    • map_images是引用类型,外界变了,跟着变
    • load_images是值类型
    1.1.1 map_images源码流程

    map_images方法的主要作用是将 Mach-O中的类信息加载到内存。

    • 进入 map_images的源码:
    void
    map_images(unsigned count, const char * const paths[],
               const struct mach_header * const mhdrs[])
    {
        mutex_locker_t lock(runtimeLock);
        return map_images_nolock(count, paths, mhdrs);
    }
    
    • 进入 map_images_nolock源码,其关键代码是_read_images
    void
    map_images_nolock(unsigned mhCount, const char * const mhPaths[],
                      const struct mach_header * const mhdrs[])
    {
        //...省略
    
        // Find all images with Objective-C metadata.查找所有带有Objective-C元数据的映像
        hCount = 0;
    
        // Count classes. Size various table based on the total.计算类的个数
        int totalClasses = 0;
        int unoptimizedTotalClasses = 0;
        //代码块:作用域,进行局部处理,即局部处理一些事件
        {
            //...省略
        }
        
        //...省略
    
        if (hCount > 0) {
            //加载镜像文件
            _read_images(hList, hCount, totalClasses, unoptimizedTotalClasses);
        }
    
        firstTime = NO;
        
        // Call image load funcs after everything is set up.一切设置完成后,调用镜像加载功能。
        for (auto func : loadImageFuncs) {
            for (uint32_t i = 0; i < mhCount; i++) {
                func(mhdrs[I]);
            }
        }
    }
    
    • _read_images源码实现
      _read_images主要是加载类信息,即类、分类、协议等,进入_read_images源码实现,主要分为以下几个部分:
      a.条件控制进行的一次加载
      b.修复预编译阶段的@selector 的混乱问题
      c.错误混乱的类处理
      d.修复重映射一些没有被镜像文件加载进来的类
      e.修复一些消息
      f.当类里边有协议时,readProtocol读取协议
      g.修复没有被加载的协议
      h.分类处理
      i.类的加载处理
      j.没有被处理的类,优化那些被侵犯的类

    a. 条件控制进行的一次加载
    doneOnce 流程中通过 NXCreateMapTable创建表,存放类信息,即创建一张类的哈希表gdb_objc_realized_classes,其目的是为了类查找方便,快捷:

    if (!doneOnce) {
         
        //...省略
        
        // namedClasses
        // Preoptimized classes don't go in this table.
        // 4/3 is NXMapTable's load factor
        int namedClassesSize = 
            (isPreoptimized() ? unoptimizedTotalClasses : totalClasses) * 4 / 3;
    //创建表(哈希表key-value),目的是查找快
        gdb_objc_realized_classes =
            NXCreateMapTable(NXStrValueMapPrototype, namedClassesSize);
    
        ts.log("IMAGE TIMES: first time tasks");
    }
    

    查看gdb_objc_realized_classes的注释说明,这个哈希表用于存储不在共享缓存且已命名类,无论类是否实现,其容量是类总数量的 3/4

    // This is a misnomer: gdb_objc_realized_classes is actually a list of 
    // named classes not in the dyld shared cache, whether realized or not.
    //gdb_objc_realized_classes实际上是不在dyld共享缓存中的已命名类的列表,无论是否实现
    NXMapTable *gdb_objc_realized_classes;  // exported for debuggers in objc-gdb.h
    

    b.修复预编译阶段@selector 的混乱问题
    主要是通过_getObjc2SelectorRefs拿到 Mach_O中的静态段__objc_selrefs,遍历列表调用sel_registerNameNoLock,将 SEL 添加到 namedSelector 哈希表中:

    // Fix up @selector references 修复@selector引用
    //sel 不是简单的字符串,而是带地址的字符串
    static size_t UnfixedSelectors;
    {
        mutex_locker_t lock(selLock);
        for (EACH_HEADER) {
            if (hi->hasPreoptimizedSelectors()) continue;
    
            bool isBundle = hi->isBundle();
            //通过_getObjc2SelectorRefs拿到Mach-O中的静态段__objc_selrefs
            SEL *sels = _getObjc2SelectorRefs(hi, &count);
            UnfixedSelectors += count;
            for (i = 0; i < count; i++) { //列表遍历
                const char *name = sel_cname(sels[i]);
                //注册sel操作,即将sel添加到
                SEL sel = sel_registerNameNoLock(name, isBundle);
                if (sels[i] != sel) {//当sel与sels[i]地址不一致时,需要调整为一致的
                    sels[i] = sel;
                }
            }
        }
    }
    
    • 其中_getObjc2SelectorRefs的源码如下,表示获取 Mach-O中的静态段__objc_selrefs,可以看到后续通过_getObjc2开头的Mach-O静态段获取,都对应不同的section name
    //      function name                 content type     section name
    GETSECT(_getObjc2SelectorRefs,        SEL,             "__objc_selrefs"); 
    GETSECT(_getObjc2MessageRefs,         message_ref_t,   "__objc_msgrefs"); 
    GETSECT(_getObjc2ClassRefs,           Class,           "__objc_classrefs");
    GETSECT(_getObjc2SuperRefs,           Class,           "__objc_superrefs");
    GETSECT(_getObjc2ClassList,           classref_t const,      "__objc_classlist");
    GETSECT(_getObjc2NonlazyClassList,    classref_t const,      "__objc_nlclslist");
    GETSECT(_getObjc2CategoryList,        category_t * const,    "__objc_catlist");
    GETSECT(_getObjc2CategoryList2,       category_t * const,    "__objc_catlist2");
    GETSECT(_getObjc2NonlazyCategoryList, category_t * const,    "__objc_nlcatlist");
    GETSECT(_getObjc2ProtocolList,        protocol_t * const,    "__objc_protolist");
    GETSECT(_getObjc2ProtocolRefs,        protocol_t *,    "__objc_protorefs");
    GETSECT(getLibobjcInitializers,       UnsignedInitializer, "__objc_init_func");
    
    • sel_registerNameNoLock的源码路径如下:sel_registerNameNoLock-> __sel_registerName,如下所示:其关键代码是auto it = namedSelectors.get().insert(name);,即将name插入namedSelectors哈希表:
    SEL sel_registerNameNoLock(const char *name, bool copy) {
        return __sel_registerName(name, 0, copy);  // NO lock, maybe copy
    }
    
    👇
    static SEL __sel_registerName(const char *name, bool shouldLock, bool copy) 
    {
        SEL result = 0;
    
        if (shouldLock) selLock.assertUnlocked();
        else selLock.assertLocked();
    
        if (!name) return (SEL)0;
    
        result = search_builtins(name);
        if (result) return result;
        
        conditional_mutex_locker_t lock(selLock, shouldLock);
        auto it = namedSelectors.get().insert(name);//sel插入表
        if (it.second) {
            // No match. Insert.
            *it.first = (const char *)sel_alloc(name, copy);
        }
        return (SEL)*it.first;
    }
    
    • 其中 selector -> sel 并不是简单的字符串,是带地址的字符串
      如下所示,sels[i]sel 字符串一致,但是地址不一致,所以需要调整为一致的。即fix up,可以通过调试:
      image.jpeg

    c.错误混乱的类的处理
    主要是从Mach-O中取出所有的类,再遍历进行处理:

    //错误混乱的类处理
    // Discover classes. Fix up unresolved future classes. Mark bundle classes.
    bool hasDyldRoots = dyld_shared_cache_some_image_overridden();
    //读取类:readClass
    for (EACH_HEADER) {
        if (! mustReadClasses(hi, hasDyldRoots)) {
            // Image is sufficiently optimized that we need not call readClass()
            continue;
        }
        //从编译后的类列表中取出所有类,即从Mach-O中获取静态段__objc_classlist,是一个classref_t类型的指针
        classref_t const *classlist = _getObjc2ClassList(hi, &count);
    
        bool headerIsBundle = hi->isBundle();
        bool headerIsPreoptimized = hi->hasPreoptimizedClasses();
    
        for (i = 0; i < count; i++) {
            Class cls = (Class)classlist[i];//此时获取的cls只是一个地址
            Class newCls = readClass(cls, headerIsBundle, headerIsPreoptimized); //读取类,经过这步后,cls获取的值才是一个名字
            //经过调试,并未执行if里面的流程
            //初始化所有懒加载的类需要的内存空间,但是懒加载类的数据现在是没有加载到的,连类都没有初始化
            if (newCls != cls  &&  newCls) {
                // Class was moved but not deleted. Currently this occurs 
                // only when the new class resolved a future class.
                // Non-lazily realize the class below.
                //将懒加载的类添加到数组中
                resolvedFutureClasses = (Class *)
                    realloc(resolvedFutureClasses, 
                            (resolvedFutureClassCount+1) * sizeof(Class));
                resolvedFutureClasses[resolvedFutureClassCount++] = newCls;
            }
        }
    }
    ts.log("IMAGE TIMES: discover classes");
    
    • 通过代码调试,确定了在没有执行 readClass方法之前,cls只是一个地址:

      image.jpeg
    • 执行后,cls 是一个类的名称

      image.jpeg

    所以到这步为止,类的信息目前仅存储了地址 + 名称

    d.修复重映射一些没有被镜像文件加载进来的类
    主要是将未映射的ClassSuper Class进行重映射,其中

    • _getObjc2ClassRefs是获取Mach-O中的静态段__objc_classrefs类的引用
      -_getObjc2SuperRefs是获取Mach-O中的静态段__objc_superrefs父类的引用
    • 通过注释可以得知,被 remapClassRef的类都是懒加载的类,所以最初经过调试时,这部分代码是没有执行的
    // 修复重映射一些没有被镜像文件加载进来的类
    // Fix up remapped classes 修正重新映射的类
    // Class list and nonlazy class list remain unremapped.类列表和非惰性类列表保持未映射
    // Class refs and super refs are remapped for message dispatching.类引用和超级引用将重新映射以进行消息分发
    //经过调试,并未执行if里面的流程
    //将未映射的Class 和 Super Class重映射,被remap的类都是懒加载的类
    if (!noClassesRemapped()) {
        for (EACH_HEADER) {
            Class *classrefs = _getObjc2ClassRefs(hi, &count);//Mach-O的静态段 __objc_classrefs
            for (i = 0; i < count; i++) {
                remapClassRef(&classrefs[I]);
            }
            // fixme why doesn't test future1 catch the absence of this?
            classrefs = _getObjc2SuperRefs(hi, &count);//Mach_O中的静态段 __objc_superrefs
            for (i = 0; i < count; i++) {
                remapClassRef(&classrefs[I]);
            }
        }
    }
    
    ts.log("IMAGE TIMES: remap classes");
    

    e.修复一些消息
    主要是通过_getObjc2MessageRefs 获取Mach-O的静态段 __objc_msgrefs,并遍历通过fixupMessageRef将函数指针进行注册,并fix为新的函数指针

    #if SUPPORT_FIXUP
    //5、修复一些消息
        // Fix up old objc_msgSend_fixup call sites
        for (EACH_HEADER) {
            // _getObjc2MessageRefs 获取Mach-O的静态段 __objc_msgrefs
            message_ref_t *refs = _getObjc2MessageRefs(hi, &count);
            if (count == 0) continue;
    
            if (PrintVtables) {
                _objc_inform("VTABLES: repairing %zu unsupported vtable dispatch "
                             "call sites in %s", count, hi->fname());
            }
            //经过调试,并未执行for里面的流程
            //遍历将函数指针进行注册,并fix为新的函数指针
            for (i = 0; i < count; i++) {
                fixupMessageRef(refs+i);
            }
        }
    
        ts.log("IMAGE TIMES: fix up objc_msgSend_fixup");
    #endif
    

    f.当有协议时:readProtocol 读取协议

    // 当类里面有协议时:readProtocol 读取协议
    // Discover protocols. Fix up protocol refs. 发现协议。修正协议参考
    //遍历所有协议列表,并且将协议列表加载到Protocol的哈希表中
    for (EACH_HEADER) {
        extern objc_class OBJC_CLASS_$_Protocol;
        //cls = Protocol类,所有协议和对象的结构体都类似,isa都对应Protocol类
        Class cls = (Class)&OBJC_CLASS_$_Protocol;
        ASSERT(cls);
        //获取protocol哈希表 -- protocol_map
        NXMapTable *protocol_map = protocols();
        bool isPreoptimized = hi->hasPreoptimizedProtocols();
    
        // Skip reading protocols if this is an image from the shared cache
        // and we support roots
        // Note, after launch we do need to walk the protocol as the protocol
        // in the shared cache is marked with isCanonical() and that may not
        // be true if some non-shared cache binary was chosen as the canonical
        // definition
        if (launchTime && isPreoptimized && cacheSupportsProtocolRoots) {
            if (PrintProtocols) {
                _objc_inform("PROTOCOLS: Skipping reading protocols in image: %s",
                             hi->fname());
            }
            continue;
        }
    
        bool isBundle = hi->isBundle();
        //通过_getObjc2ProtocolList 获取到Mach-O中的静态段__objc_protolist协议列表,
        //即从编译器中读取并初始化protocol
        protocol_t * const *protolist = _getObjc2ProtocolList(hi, &count);
        for (i = 0; i < count; i++) {
            //通过添加protocol到protocol_map哈希表中
            readProtocol(protolist[i], cls, protocol_map, 
                         isPreoptimized, isBundle);
        }
    }
    
    ts.log("IMAGE TIMES: discover protocols");
    
    • 通过NXMapTable *protocol_map = protocols();创建 protocol 哈希表,表的名称为 protocol_map:
    /***********************************************************************
    * protocols
    * Returns the protocol name => protocol map for protocols.
    * Locking: runtimeLock must read- or write-locked by the caller
    **********************************************************************/
    static NXMapTable *protocols(void)
    {
        static NXMapTable *protocol_map = nil;
        
        runtimeLock.assertLocked();
    
        INIT_ONCE_PTR(protocol_map, 
                      NXCreateMapTable(NXStrValueMapPrototype, 16), 
                      NXFreeMapTable(v) );
    
        return protocol_map;
    }
    
    • 通过_getObjc2ProtocolList获取到Mach-O中的静态段__objc_protolist协议列表,即从编译器中读取并初始化protocol:
    protocol_t * const *protolist = _getObjc2ProtocolList(hi, &count);
    
    
    • 循环遍历协议列表,通过readProtocol方法将协议添加到 protocol_map哈希表中:
    readProtocol(protolist[i], cls, protocol_map, 
                             isPreoptimized, isBundle);
    

    G.修复没有被加载的协议
    主要是通过_getObjc2ProtocolRefs 获取到Mach-O的静态段 __objc_protorefs(与上面👆的__objc_protolist并不是同一个东西),然后遍历需要修复的协议,通过remapProtocolRef比较当前协议和协议列表中的同一个内存地址的协议是否相同,如果不同则替换:

    // 修复没有被加载的协议
    // Fix up @protocol references
    // Preoptimized images may have the right 
    // answer already but we don't know for sure.
    for (EACH_HEADER) {
        // At launch time, we know preoptimized image refs are pointing at the
        // shared cache definition of a protocol.  We can skip the check on
        // launch, but have to visit @protocol refs for shared cache images
        // loaded later.
        if (launchTime && cacheSupportsProtocolRoots && hi->isPreoptimized())
            continue;
        //_getObjc2ProtocolRefs 获取到Mach-O的静态段 __objc_protorefs
        protocol_t **protolist = _getObjc2ProtocolRefs(hi, &count);
        for (i = 0; i < count; i++) {//遍历
            //比较当前协议和协议列表中的同一个内存地址的协议是否相同,如果不同则替换
            remapProtocolRef(&protolist[i]);//经过代码调试,并未执行
        }
    }
    
    ts.log("IMAGE TIMES: fix up @protocol references");
    

    其中remapProtocolRef 的源码实现如下:

    /***********************************************************************
    * remapProtocolRef
    * Fix up a protocol ref, in case the protocol referenced has been reallocated.
    * Locking: runtimeLock must be read- or write-locked by the caller
    **********************************************************************/
    static size_t UnfixedProtocolReferences;
    static void remapProtocolRef(protocol_t **protoref)
    {
        runtimeLock.assertLocked();
        //获取协议列表中统一内存地址的协议
        protocol_t *newproto = remapProtocol((protocol_ref_t)*protoref);
        if (*protoref != newproto) {//如果当前协议 与 同一内存地址协议不同,则替换
            *protoref = newproto;
            UnfixedProtocolReferences++;
        }
    }
    

    H.分类处理
    这一步主要是处理分类,需要在分类初始化并且将数据加载到类之后才执行,对于运行时出现的分类,将分类的发现推迟到对_dyld_objc_notify_register的调用完成后的第一个load_images调用为止

    //、分类处理
    // Discover categories. Only do this after the initial category 发现分类
    // attachment has been done. For categories present at startup,
    // discovery is deferred until the first load_images call after
    // the call to _dyld_objc_notify_register completes. rdar://problem/53119145
    if (didInitialAttachCategories) {
        for (EACH_HEADER) {
            load_categories_nolock(hi);
        }
    }
    
    ts.log("IMAGE TIMES: discover categories");
    

    I.类的加载处理
    主要是实现类的加载处理,实现非懒加载类(下面会有介绍):

    • 通过_getObjc2NonlazyClassList获取Mach-O的静态段__objc_nlclslist非懒加载类表
    • 通过addClassTableEntry将非懒加载类插入类表,存储到内存,如果已经添加就不会载添加,需要确保整个结构都被添加
    • 通过realizeClassWithoutSwift实现当前的类,因为前面的readClass读取到内存的仅仅只有地址+名称,类的data数据并没有加载出来
    // Realize non-lazy classes (for +load methods and static instances) 初始化非懒加载类,进行rw、ro等操作:realizeClassWithoutSwift
        //懒加载类 -- 别人不动我,我就不动
        //实现非懒加载的类,对于load方法和静态实例变量
        for (EACH_HEADER) {
            //通过_getObjc2NonlazyClassList获取Mach-O的静态段__objc_nlclslist非懒加载类表
            classref_t const *classlist = 
                _getObjc2NonlazyClassList(hi, &count);
            for (i = 0; i < count; i++) {
                Class cls = remapClass(classlist[i]);
                
       
                
                if (!cls) continue;
    
                addClassTableEntry(cls);//插入表,但是前面已经插入过了,所以不会重新插入
    
                if (cls->isSwiftStable()) {
                    if (cls->swiftMetadataInitializer()) {
                        _objc_fatal("Swift class %s with a metadata initializer "
                                    "is not allowed to be non-lazy",
                                    cls->nameForLogging());
                    }
                    // fixme also disallow relocatable classes
                    // We can't disallow all Swift classes because of
                    // classes like Swift.__EmptyArrayStorage
                }
                //实现当前的类,因为前面readClass读取到内存的仅仅只有地址+名称,类的data数据并没有加载出来
                //实现所有非懒加载的类(实例化类对象的一些信息,例如rw)
                realizeClassWithoutSwift(cls, nil);
            }
        }
    
    

    J.实现没有被处理的类,优化哪些被侵犯的类

    // Realize newly-resolved future classes, in case CF manipulates them
        if (resolvedFutureClasses) {
            for (i = 0; i < resolvedFutureClassCount; i++) {
                Class cls = resolvedFutureClasses[I];
                if (cls->isSwiftStable()) {
                    _objc_fatal("Swift class is not allowed to be future");
                }
                //实现类
                realizeClassWithoutSwift(cls, nil);
                cls->setInstancesRequireRawIsaRecursively(false/*inherited*/);
            }
            free(resolvedFutureClasses);
        }
    
        ts.log("IMAGE TIMES: realize future classes");
    
        if (DebugNonFragileIvars) {
            //实现所有类
            realizeAllClasses();
        }
    

    我们需要重点关注的是我们需要重点关注的是readClass以及realizeClassWithoutSwift两个方法。

    2. readClass & realizeClassWithoutSwift

    2.1 readClass 读取类

    readClass 主要是读取类,在未调用该方法前,cls 只是一个地址,执行该方法后,cls 是类的名称,其源码实现如下,关键代码是 addNamedClassaddClassTableEntry,源码实现如下:

    /***********************************************************************
    * readClass
    * Read a class and metaclass as written by a compiler. 读取编译器编写的类和元类
    * Returns the new class pointer. This could be:  返回新的类指针,可能是:
    * - cls
    * - nil  (cls has a missing weak-linked superclass)
    * - something else (space for this class was reserved by a future class)
    *
    * Note that all work performed by this function is preflighted by 
    * mustReadClasses(). Do not change this function without updating that one.
    *
    * Locking: runtimeLock acquired by map_images or objc_readClassPair
    **********************************************************************/
    Class readClass(Class cls, bool headerIsBundle, bool headerIsPreoptimized)
    {
        const char *mangledName = cls->mangledName();//名字
        
        //当前类的父类中若有丢失的weak-linked类,则返回nil
        if (missingWeakSuperclass(cls)) {
            // No superclass (probably weak-linked). 
            // Disavow any knowledge of this subclass.
            if (PrintConnecting) {
                _objc_inform("CLASS: IGNORING class '%s' with "
                             "missing weak-linked superclass", 
                             cls->nameForLogging());
            }
            addRemappedClass(cls, nil);
            cls->superclass = nil;
            return nil;
        }
        
        cls->fixupBackwardDeployingStableSwift();
    //判断是不是后期要处理的类
        //正常情况下,不会走到popFutureNamedClass,因为这是专门针对未来待处理的类的操作
        //通过断点调试,不会走到if流程里面,因此也不会对ro、rw进行操作
        Class replacing = nil;
        if (Class newCls = popFutureNamedClass(mangledName)) {
            // This name was previously allocated as a future class.
            // Copy objc_class to future class's struct.
            // Preserve future's rw data block.
            
            if (newCls->isAnySwift()) {
                _objc_fatal("Can't complete future class request for '%s' "
                            "because the real class is too big.", 
                            cls->nameForLogging());
            }
            //读取class的data,设置ro、rw
            //经过调试,并不会走到这里
            class_rw_t *rw = newCls->data();
            const class_ro_t *old_ro = rw->ro();
            memcpy(newCls, cls, sizeof(objc_class));
            rw->set_ro((class_ro_t *)newCls->data());
            newCls->setData(rw);
            freeIfMutable((char *)old_ro->name);
            free((void *)old_ro);
            
            addRemappedClass(cls, newCls);
            
            replacing = cls;
            cls = newCls;
        }
        //判断是否类是否已经加载到内存
        if (headerIsPreoptimized  &&  !replacing) {
            // class list built in shared cache
            // fixme strict assert doesn't work because of duplicates
            // ASSERT(cls == getClass(name));
            ASSERT(getClassExceptSomeSwift(mangledName));
        } else {
            addNamedClass(cls, mangledName, replacing);//加载共享缓存中的类
            addClassTableEntry(cls);//插入表,即相当于从mach-O文件 读取到 内存 中
        }
    
        // for future reference: shared cache never contains MH_BUNDLEs
        if (headerIsBundle) {
            cls->data()->flags |= RO_FROM_BUNDLE;
            cls->ISA()->data()->flags |= RO_FROM_BUNDLE;
        }
        
        return cls;
    }
    

    通过源码实现,主要分为以下几步:

    • 通过 mangledName获取类的名字,其中 mangledName 方法的源码实现如下:
    const char *mangledName() { 
            // fixme can't assert locks here
            ASSERT(this);
    
            if (isRealized()  ||  isFuture()) { //这个初始化判断在lookupImp也有类似的
                return data()->ro()->name;//如果已经实例化,则从ro中获取name
            } else {
                return ((const class_ro_t *)data())->name;//反之,从mach-O的数据data中获取name
            }
        }
    
    • 当前类的父类中若有丢失的weak-linked类,则返回 nil

    • 判断是不是后期需要处理的类,在正常情况下,不会走到 popFutureNamedClass,因为这是专门针对未来待处理类的操作,也可以通过断点调试,就可以知道不会走到if 流程里边,因此也不会对ro rw进行操作。

      • datamach-o的数据,并不在 class的内存中
      • ro 的赋值是从 mach-o 中的data强转赋值的
      • rw 里的ro是从ro 复制过去的
    • 通过addNamedClass将当前类添加到已经创建好的 gdb_objc_realized_classes哈希表,该表用于存放所有类

    /***********************************************************************
    * addNamedClass 加载共享缓存中的类 插入表
    * Adds name => cls to the named non-meta class map. 将name=> cls添加到命名的非元类映射
    * Warns about duplicate class names and keeps the old mapping.
    * Locking: runtimeLock must be held by the caller
    **********************************************************************/
    static void addNamedClass(Class cls, const char *name, Class replacing = nil)
    {
        runtimeLock.assertLocked();
        Class old;
        if ((old = getClassExceptSomeSwift(name))  &&  old != replacing) {
            inform_duplicate(name, old, cls);
    
            // getMaybeUnrealizedNonMetaClass uses name lookups.
            // Classes not found by name lookup must be in the
            // secondary meta->nonmeta table.
            addNonMetaClass(cls);
        } else {
            //添加到gdb_objc_realized_classes哈希表
            NXMapInsert(gdb_objc_realized_classes, name, cls);
        }
        ASSERT(!(cls->data()->flags & RO_META));
    
        // wrong: constructed classes are already realized when they get here
        // ASSERT(!cls->isRealized());
    }
    
    • 通过 addClassTableEntry,将初始化的类添加到allocatedClasses表,这个表在之前介绍dyld 与 objc 的关联中提到过,是在_objc_init中的runtime_init就创建了allocatedClasses表:
    /***********************************************************************
    * addClassTableEntry 将一个类添加到所有类的表中
    * Add a class to the table of all classes. If addMeta is true,
    * automatically adds the metaclass of the class as well.
    * Locking: runtimeLock must be held by the caller.
    **********************************************************************/
    static void
    addClassTableEntry(Class cls, bool addMeta = true)
    {
        runtimeLock.assertLocked();
    
        // This class is allowed to be a known class via the shared cache or via
        // data segments, but it is not allowed to be in the dynamic table already.
        auto &set = objc::allocatedClasses.get();//开辟的类的表,在objc_init中的runtime_init就创建了表
    
        ASSERT(set.find(cls) == set.end());
    
        if (!isKnownClass(cls))
            set.insert(cls);
        if (addMeta)
            // addMeta  默认为 true,将元类也添加allocatedClasses哈希表
            addClassTableEntry(cls->ISA(), false);
    }
    

    注意:其实gdb_objc_realized_classesallocatedClasses是一种包含关系,一张是类的总表,一张是已经开辟了内存的类表,

    • 如果我们想在 readClass 源码中定位到自定义的类,可以自定义 加 if 判断

    总结:
    所以 readClass的主要作用就是将Mach-O中的类读取到内存,即插入表中,但是目前的类仅有两个信息:地址以及名称,而 mach-o的其中的 data 数据还没有读取出来。

    2.2 realizeClassWithoutSwift 实现类

    realizeClassWithoutSwift方法中有ro、rw 的相关操作,这个方法在消息流程的慢速查找中有所提及,方法路径为:慢速查找(lookUpImpOrForward) --realizeClassMaybeSwiftAndLeaveLocked -- realizeClassMaybeSwiftMaybeRelock -- realizeClassWithoutSwift(实现类)

    realizeClassWithoutSwift方法主要的作用是实现类,将类的 data 数据加载到内存中,主要有以下几部分操作:
    [第一步]:读取 data 数据,并设置ro、rw
    [第二步]:递归调用realizeClassWithoutSwift完善继承链
    [第三步]:通过methodizeClass方法化类
    [第四步]:attachToClass 加入分类中的方法

    [第一步]:读取 data 数据
    读取classdata数据(此时的数据是从 mach-o文件读取出来的),并将其强转为ro,以及rw 初始化ro 拷贝一份到 rw 中的 ro
    -ro表示 readOnly,只读,在编译时就已经确定了内存,包含类名称、方法、协议和实例变量的信息,由于是只读的,所以属于Clean Memory,而Clean Memory是指加载后不会发生更改的内存。

    -rw 表示readWrite,即可读可写,由于其动态性,可能会往类中添加属性、方法、添加协议,在最新的2020的WWDC的对内存优化的说明Advancements in the Objective-C runtime - WWDC 2020 - Videos - Apple Developer中,提到rw,其实在rw 中只有 10%的类真正改变了它们的方法,所以有了rwe,即类的额外信息。对于那些确实需要额外信息的类,可以分配 rwe 扩展记录中的一个,并将其划入类中供其使用。其中rw 就属于dirty memory,而dirty memory 是指在进行运行时会发生更改的内存,类结构一经使用就会变成 dirty memory,因为运行时会向他写入新数据,例如创建一个新的方法缓存,并从类中指向它。

    // fixme verify class is not in an un-dlopened part of the shared cache?
    //读取class的data(),以及ro/rw创建
    auto ro = (const class_ro_t *)cls->data(); //读取类结构的bits属性、//ro -- clean memory,在编译时就已经确定了内存
    auto isMeta = ro->flags & RO_META; //判断元类
    if (ro->flags & RO_FUTURE) {
        // This was a future class. rw data is already allocated.
      // 这是一个未来的类,rw 数据已经开辟过了
        rw = cls->data(); //dirty memory 进行赋值
        ro = cls->data()->ro();
        ASSERT(!isMeta);
        cls->changeInfo(RW_REALIZED|RW_REALIZING, RW_FUTURE);
    } else { 
        // Normal class. Allocate writeable class data.
        // 大多数的类都会走这个方法 
        rw = objc::zalloc<class_rw_t>(); //申请开辟zalloc -- rw
        rw->set_ro(ro);//rw中的ro设置为临时变量ro
        rw->flags = RW_REALIZED|RW_REALIZING|isMeta;
        cls->setData(rw);//将cls的data赋值为rw形式
    }
    
    • class_ro_t & class_rw_t

    class_ro_t 存储了当前类在编译期就已经确定的属性、方法以及遵循的协议,里面是没有分类的方法的,那些运行时添加的方法将会存储在运行时生成的 class_rw_t中。
    class_rw_t存储类中的属性、方法还有协议等,在运行时生成

    在编译期间,class_ro_t结构体就已经确定,oblc_classbitsdata 部分存放着该结构体的地址。在运行期间,也就是上面的方法中,会生成class_rw_t结构体,将class_ro_t结构体设置为 class_rw_t结构体的ro部分,并且更新类的data 部分,换成 class_rw_t结构体的地址:

    类实现之前:


    image.png

    类实现之后:


    image.png

    此时 rw 还是空的,这里只是对 rw 进行了初始化,但是方法、属性、协议这些还没有被添加上。

    [第二步]:递归调用 realizeClassWithoutSwift 完善继承链
    递归调用realizeClassWithoutSwift完善继承链,并设置当前类、父类、元类的rw

    • 递归调用realizeClassWithoutSwift设置父类、元类
    • 设置父类和元类的isa 指向
    • 通过 addSubClassaddRootClass 设置父子的双向链表指向关系,即父类中可以找到子类,子类中可以找到父类
     // Realize superclass and metaclass, if they aren't already.
        // This needs to be done after RW_REALIZED is set above, for root classes.
        // This needs to be done after class index is chosen, for root metaclasses.
        // This assumes that none of those classes have Swift contents,
        //   or that Swift's initializers have already been called.
        //   fixme that assumption will be wrong if we add support
        //   for ObjC subclasses of Swift classes. --
        //递归调用realizeClassWithoutSwift完善继承链,并处理当前类的父类、元类
        //递归实现 设置当前类、父类、元类的 rw,主要目的是确定继承链 (类继承链、元类继承链)
        //实现元类、父类
        //当isa找到根元类之后,根元类的isa是指向自己的,不会返回nil从而导致死循环——remapClass中对类在表中进行查找的操作,如果表中已有该类,则返回一个空值;如果没有则返回当前类,这样保证了类只加载一次并结束递归
        supercls = realizeClassWithoutSwift(remapClass(cls->superclass), nil);
        metacls = realizeClassWithoutSwift(remapClass(cls->ISA()), nil);
        
    ...
    
    // Update superclass and metaclass in case of remapping -- class 是 双向链表结构 即父子关系都确认了
    // 将父类和元类给我们的类 分别是isa和父类的对应值
    cls->superclass = supercls;
    cls->initClassIsa(metacls);
    
    ...
    
    // Connect this class to its superclass's subclass lists
    //双向链表指向关系 父类中可以找到子类 子类中也可以找到父类
    //通过addSubclass把当前类放到父类的子类列表中去
    if (supercls) {
        addSubclass(supercls, cls);
    } else {
        addRootClass(cls);
    }
    

    这里有一个问题,realizeClassWithoutSwift递归调用时,isa 找到根元类之后,根元类的isa 指向自己,并不会返回 nil,所以有了下面的递归终止条件,其目的是保证类只加载一次。

    • realizeClassWithoutSwift
      • 如果类不存在,则返回 nil
      • 如果类已经实现,则直接返回 cls
    static Class realizeClassWithoutSwift(Class cls, Class previously)
    {
        runtimeLock.assertLocked();
        
        //如果类不存在,则返回nil
        if (!cls) return nil;
        如果类已经实现,则直接返回cls
        if (cls->isRealized()) return cls;
        ASSERT(cls == remapClass(cls));
        
        ...
    }
    
    • remapClass 方法中,如果cls不存在,则直接返回 nil
    /***********************************************************************
    * remapClass
    * Returns the live class pointer for cls, which may be pointing to 
    * a class struct that has been reallocated.
    * Returns nil if cls is ignored because of weak linking.
    * Locking: runtimeLock must be read- or write-locked by the caller
    **********************************************************************/
    static Class remapClass(Class cls)
    {
        runtimeLock.assertLocked();
    
        if (!cls) return nil;//如果cls不存在,则返回nil
    
        auto *map = remappedClasses(NO);
        if (!map)
            return cls;
        
        auto iterator = map->find(cls);
        if (iterator == map->end())
            return cls;
        return std::get<1>(*iterator);
    }
    

    [第三步]:通过 methodizeClass方法化类
    通过methodizeClass方法,从ro中读取方法列表(包括分类中的方法)、属性列表、协议列表赋值给rw,并返回cls

    // Attach categories 附加类别 -- 疑问:ro中也有方法列表 rw中也有方法列表,下面这个方法可以说明
    //将ro数据写入到rw
    methodizeClass(cls, previously);
    
    return cls;
    

    其中methodizeClass的源码实现如下,主要分为几部分:

    • 属性列表方法列表协议列表等贴到 rwe
    • 附加分类中的方法
    static void methodizeClass(Class cls, Class previously)
    {
        runtimeLock.assertLocked();
    
        bool isMeta = cls->isMetaClass();
        auto rw = cls->data(); // 初始化一个rw
        auto ro = rw->ro();
        auto rwe = rw->ext();
        
        ...
    
        // Install methods and properties that the class implements itself.
        //将属性列表、方法列表、协议列表等贴到rw中
        // 将ro中的方法列表加入到rw中
        method_list_t *list = ro->baseMethods();//获取ro的baseMethods
        if (list) {
            prepareMethodLists(cls, &list, 1, YES, isBundleClass(cls));//methods进行排序
            if (rwe) rwe->methods.attachLists(&list, 1);//对rwe进行处理
        }
        // 加入属性
        property_list_t *proplist = ro->baseProperties;
        if (rwe && proplist) {
            rwe->properties.attachLists(&proplist, 1);
        }
        // 加入协议
        protocol_list_t *protolist = ro->baseProtocols;
        if (rwe && protolist) {
            rwe->protocols.attachLists(&protolist, 1);
        }
    
        // Root classes get bonus method implementations if they don't have 
        // them already. These apply before category replacements.
        if (cls->isRootMetaclass()) {
            // root metaclass
            addMethod(cls, @selector(initialize), (IMP)&objc_noop_imp, "", NO);
        }
    
        // Attach categories.
        // 加入分类中的方法
        if (previously) {
            if (isMeta) {
                objc::unattachedCategories.attachToClass(cls, previously,
                                                         ATTACH_METACLASS);
            } else {
                // When a class relocates, categories with class methods
                // may be registered on the class itself rather than on
                // the metaclass. Tell attachToClass to look for those.
                objc::unattachedCategories.attachToClass(cls, previously,
                                                         ATTACH_CLASS_AND_METACLASS);
            }
        }
        objc::unattachedCategories.attachToClass(cls, cls,
                                                 isMeta ? ATTACH_METACLASS : ATTACH_CLASS);
    
        ....
    }
    

    方法列表加入rwe的逻辑如下:

    • 获取 robaseMethods
    • 通过 perpareMethodLists方法排序
    • rwe 进行处理,即通过 attachList插入

    方法如何排序?
    在消息流程的慢速查找流程中,方法的查找算法是二分查找算法,说明sel-imp是有排序的,那么是如何排序的呢?

    • 进入 perpareMethodLists的源码实现,其内部是通过 fixupMethodList 方法排序的
    static void 
    prepareMethodLists(Class cls, method_list_t **addedLists, int addedCount,
                       bool baseMethods, bool methodsFromBundle)
    {
        ...
    
        // Add method lists to array.
        // Reallocate un-fixed method lists.
        // The new methods are PREPENDED to the method list array.
    
        for (int i = 0; i < addedCount; i++) {
            method_list_t *mlist = addedLists[I];
            ASSERT(mlist);
    
            // Fixup selectors if necessary
            if (!mlist->isFixedUp()) {
                fixupMethodList(mlist, methodsFromBundle, true/*sort*/);//排序
            }
        }
        
        ...
    }
    
    • 进入fixupMethodList源码,是根据selector address 排序的
    static void 
    fixupMethodList(method_list_t *mlist, bool bundleCopy, bool sort)
    {
        runtimeLock.assertLocked();
        ASSERT(!mlist->isFixedUp());
    
        // fixme lock less in attachMethodLists ?
        // dyld3 may have already uniqued, but not sorted, the list
        if (!mlist->isUniqued()) {
            mutex_locker_t lock(selLock);
        
            // Unique selectors in list.
            for (auto& meth : *mlist) {
                const char *name = sel_cname(meth.name);
                meth.name = sel_registerNameNoLock(name, bundleCopy);
            }
        }
    
        // Sort by selector address.根据sel地址排序
        if (sort) {
            method_t::SortBySELAddress sorter;
            std::stable_sort(mlist->begin(), mlist->end(), sorter);
        }
        
        // Mark method list as uniqued and sorted
        mlist->setFixedUp();
    }
    

    [第四步]:attachToClass 加入分类

         // 加入分类
        // Attach categories.
        if (previously) {
            if (isMeta) {
                objc::unattachedCategories.attachToClass(cls, previously,
                                                         ATTACH_METACLASS);
            } else {
                // When a class relocates, categories with class methods
                // may be registered on the class itself rather than on
                // the metaclass. Tell attachToClass to look for those.
                objc::unattachedCategories.attachToClass(cls, previously,
                                                         ATTACH_CLASS_AND_METACLASS);
            }
        }
        objc::unattachedCategories.attachToClass(cls, cls,
                                                 isMeta ? ATTACH_METACLASS : ATTACH_CLASS);
    

    主要调用了unattachedCategories.attachToClass方法,源码实现如下:

    void attachToClass(Class cls, Class previously, int flags)
    {
        runtimeLock.assertLocked();
        ASSERT((flags & ATTACH_CLASS) ||
               (flags & ATTACH_METACLASS) ||
               (flags & ATTACH_CLASS_AND_METACLASS));
    
        
        const char *mangledName  = cls->mangledName();
        const char *LGPersonName = "LGPerson";
    
        if (strcmp(mangledName, LGPersonName) == 0) {
            bool kc_isMeta = cls->isMetaClass();
            auto kc_rw = cls->data();
            auto kc_ro = kc_rw->ro();
            if (!kc_isMeta) {
                printf("%s: 这个是我要研究的 %s \n",__func__,LGPersonName);
            }
        }
        
        
        auto &map = get();
        auto it = map.find(previously);//找到一个分类进来一次,即一个个加载分类,不要混乱
    
        if (it != map.end()) {//这里会走进来:当主类没有实现load,分类开始加载,迫使主类加载,会走到if流程里面
            category_list &list = it->second;
            if (flags & ATTACH_CLASS_AND_METACLASS) {//判断是否是元类
                int otherFlags = flags & ~ATTACH_CLASS_AND_METACLASS;
                attachCategories(cls, list.array(), list.count(), otherFlags | ATTACH_CLASS);//实例方法
                attachCategories(cls->ISA(), list.array(), list.count(), otherFlags | ATTACH_METACLASS);//类方法
            } else {
                //如果不是元类,则只走一次 attachCategories
                attachCategories(cls, list.array(), list.count(), flags);
            }
            map.erase(it);
        }
    }
    

    因为 attachToClass中的外部循环是找到一个分类就会进到 attachCategories一次,即找一个就循环一次。

    attachCategories方法中主要是准备分类的数据,其源码实现如下:

    static void
    attachCategories(Class cls, const locstamped_category_t *cats_list, uint32_t cats_count,
                     int flags)
    {
        if (slowpath(PrintReplacedMethods)) {
            printReplacements(cls, cats_list, cats_count);
        }
        if (slowpath(PrintConnecting)) {
            _objc_inform("CLASS: attaching %d categories to%s class '%s'%s",
                         cats_count, (flags & ATTACH_EXISTING) ? " existing" : "",
                         cls->nameForLogging(), (flags & ATTACH_METACLASS) ? " (meta)" : "");
        }
    
        /*
         * Only a few classes have more than 64 categories during launch.
         * This uses a little stack, and avoids malloc.
         *
         * Categories must be added in the proper order, which is back
         * to front. To do that with the chunking, we iterate cats_list
         * from front to back, build up the local buffers backwards,
         * and call attachLists on the chunks. attachLists prepends the
         * lists, so the final result is in the expected order.
         */
        constexpr uint32_t ATTACH_BUFSIZ = 64;
        method_list_t   *mlists[ATTACH_BUFSIZ];
        property_list_t *proplists[ATTACH_BUFSIZ];
        protocol_list_t *protolists[ATTACH_BUFSIZ];
    
        uint32_t mcount = 0;
        uint32_t propcount = 0;
        uint32_t protocount = 0;
        bool fromBundle = NO;
        bool isMeta = (flags & ATTACH_METACLASS);
        /*
         rwe的创建,
         那么为什么要在这里进行`rwe的初始化`?因为我们现在要做一件事:往`本类`中`添加属性、方法、协议`等
         */
        auto rwe = cls->data()->extAllocIfNeeded();
            
        //mlists 是一个二维数组
        for (uint32_t i = 0; i < cats_count; i++) {
            auto& entry = cats_list[I];
    
            method_list_t *mlist = entry.cat->methodsForMeta(isMeta);
            if (mlist) {
                if (mcount == ATTACH_BUFSIZ) {//mcount = 0,ATTACH_BUFSIZ= 64,不会走到if里面的流程
                    prepareMethodLists(cls, mlists, mcount, NO, fromBundle);//准备排序
                    rwe->methods.attachLists(mlists, mcount);
                    mcount = 0;
                }
                mlists[ATTACH_BUFSIZ - ++mcount] = mlist;
                fromBundle |= entry.hi->isBundle();
            }
    
            property_list_t *proplist =
                entry.cat->propertiesForMeta(isMeta, entry.hi);
            if (proplist) {
                if (propcount == ATTACH_BUFSIZ) {
                    rwe->properties.attachLists(proplists, propcount);
                    propcount = 0;
                }
                proplists[ATTACH_BUFSIZ - ++propcount] = proplist;
            }
    
            protocol_list_t *protolist = entry.cat->protocolsForMeta(isMeta);
            if (protolist) {
                if (protocount == ATTACH_BUFSIZ) {
                    rwe->protocols.attachLists(protolists, protocount);
                    protocount = 0;
                }
                protolists[ATTACH_BUFSIZ - ++protocount] = protolist;
            }
        }
    
        if (mcount > 0) {
            prepareMethodLists(cls, mlists + ATTACH_BUFSIZ - mcount, mcount, NO, fromBundle);//排序
            rwe->methods.attachLists(mlists + ATTACH_BUFSIZ - mcount, mcount);//mlists + ATTACH_BUFSIZ - mcount 为内存平移
            if (flags & ATTACH_EXISTING) flushCaches(cls);
        }
    
        rwe->properties.attachLists(proplists + ATTACH_BUFSIZ - propcount, propcount);
    
        rwe->protocols.attachLists(protolists + ATTACH_BUFSIZ - protocount, protocount);
    }
    

    auto rwe = cls->data()->extAllocIfNeeded();是进行 rwe 的创建,那么为什么要在这里进行rwe 的初始化?因为我们现在要做一件事:往本类中添加属性、方法、协议等,即对原来的clean memory要进行处理了:

    • 进入extAllocIfNeeded方法的源码实现,判断rwe 是否存在,如果存在则直接获取,如果不存在则开辟
    • 进入extAlloc 源码实现,即对 rwe`` 0 - 1的过程,在此过程中,就将本类的data数据加载进去了
    class_rw_ext_t *extAllocIfNeeded() {
        auto v = get_ro_or_rwe();
        if (fastpath(v.is<class_rw_ext_t *>())) { //判断rwe是否存在
            return v.get<class_rw_ext_t *>();//如果存在,则直接获取
        } else {
            return extAlloc(v.get<const class_ro_t *>());//如果不存在则进行开辟
        }
    }
    
    👇//extAlloc源码实现
    class_rw_ext_t *
    class_rw_t::extAlloc(const class_ro_t *ro, bool deepCopy)
    {
        runtimeLock.assertLocked();
        //此时只有rw,需要对rwe进行数据添加,即0-1的过程
        auto rwe = objc::zalloc<class_rw_ext_t>();//创建
        
        rwe->version = (ro->flags & RO_META) ? 7 : 0;
    
        method_list_t *list = ro->baseMethods();
        if (list) {
            if (deepCopy) list = list->duplicate();
            rwe->methods.attachLists(&list, 1);
        }
    
        // See comments in objc_duplicateClass
        // property lists and protocol lists historically
        // have not been deep-copied
        //
        // This is probably wrong and ought to be fixed some day
        property_list_t *proplist = ro->baseProperties;
        if (proplist) {
            rwe->properties.attachLists(&proplist, 1);
        }
    
        protocol_list_t *protolist = ro->baseProtocols;
        if (protolist) {
            rwe->protocols.attachLists(&protolist, 1);
        }
    
        set_ro_or_rwe(rwe, ro);
        return rwe;
    }
    

    总结:本类中需要添加属性、方法等,所以需要初始化rwerwe的初始化主要涉及:分类、addMethodaddPropertyaddprotocol,即对原始类进行修改或者处理时,才会进行rwe的初始化

    attachLists 方法:插入
    为什么方法、属性、协议都能调用这个方法呢?

    • 其中方法、属性继承于 entsize_list_tt,协议则是类似 entsize_list_tt实现,都是二维数组
    struct method_list_t : entsize_list_tt<method_t, method_list_t, 0x3> 
    
    struct property_list_t : entsize_list_tt<property_t, property_list_t, 0> 
    
    struct protocol_list_t {
        // count is pointer-sized by accident.
        uintptr_t count;
        protocol_ref_t list[0]; // variable-size
    
        size_t byteSize() const {
            return sizeof(*this) + count*sizeof(list[0]);
        }
    
        protocol_list_t *duplicate() const {
            return (protocol_list_t *)memdup(this, this->byteSize());
        }
        ...
    }
    

    -进入attachLists方法的源码实现

    void attachLists(List* const * addedLists, uint32_t addedCount) {
        if (addedCount == 0) return;
    
        if (hasArray()) {
            // many lists -> many lists
            //计算数组中旧lists的大小
            uint32_t oldCount = array()->count;
            //计算新的容量大小 = 旧数据大小+新数据大小
            uint32_t newCount = oldCount + addedCount;
            //根据新的容量大小,开辟一个数组,类型是 array_t,通过array()获取
            setArray((array_t *)realloc(array(), array_t::byteSize(newCount)));
            //设置数组大小
            array()->count = newCount;
            //旧的数据从 addedCount 数组下标开始 存放旧的lists,大小为 旧数据大小 * 单个旧list大小
            memmove(array()->lists + addedCount, array()->lists, 
                    oldCount * sizeof(array()->lists[0]));
            //新数据从数组 首位置开始存储,存放新的lists,大小为 新数据大小 * 单个list大小
            memcpy(
                   array()->lists, addedLists, 
                   addedCount * sizeof(array()->lists[0]));
        }
        else if (!list  &&  addedCount == 1) {
            // 0 lists -> 1 list
            list = addedLists[0];//将list加入mlists的第一个元素,此时的list是一个一维数组
        } 
        else {
            // 1 list -> many lists 有了一个list,有往里加很多list
            //新的list就是分类,来自LRU的算法思维,即最近最少使用
            //获取旧的list
            List* oldList = list;
            uint32_t oldCount = oldList ? 1 : 0;
            //计算容量和 = 旧list个数+新lists的个数
            uint32_t newCount = oldCount + addedCount;
            //开辟一个容量和大小的集合,类型是 array_t,即创建一个数组,放到array中,通过array()获取
            setArray((array_t *)malloc(array_t::byteSize(newCount)));
            //设置数组的大小
            array()->count = newCount;
            //判断old是否存在,old肯定是存在的,将旧的list放入到数组的末尾
            if (oldList) array()->lists[addedCount] = oldList;
            // memcpy(开始位置,放什么,放多大) 是内存平移,从数组起始位置存入新的list
            //其中array()->lists 表示首位元素位置
            memcpy(array()->lists, addedLists, 
                   addedCount * sizeof(array()->lists[0]));
        }
    }
    

    从源码可以得知,插入表主要分为三种情况:

    【情况1:多对多】
    如果当前调用attachListslist_array_tt二维数组中有多个一维数组

    • 计算数组中旧lists的大小
    • 计算新的容量大小 = 旧数据大小+新数据大小
    • 根据新的容量大小,开辟一个数组,类型是 array_t,通过array()获取
    • 设置数组大小
    • 旧的数据从addedCount数组下标开始 存放旧的lists,大小为 旧数据大小 * 单个旧list大小,即整段平移,可以简单理解为原来的数据移动到后面,即指针偏移
    • 新数据从数组 首位置开始存储,存放新的lists,大小为 新数据大小* 单个list大小,可以简单理解为越晚加进来,越在前面,越在前面,调用时则优先调用

    【情况2:0对一】
    如果调用attachListslist_array_tt二维数组为空且新增大小数目为 1

    • 直接赋值addedList的第一个list

    【情况3:一对多】如果当前调用attachListslist_array_tt二维数组只有一个一维数组

    • 获取旧的list
    • 计算容量和 = 旧list个数+新lists的个数
    • 开辟一个容量和大小的集合,类型是 array_t,即创建一个数组,放到array中,通过array()获取
    • 设置数组的大小
    • 判断old是否存在,old肯定是存在的,将旧的list放入到数组的末尾
    • memcpy(开始位置,放什么,放多大) 是内存平移,从数组起始位置开始存入新的list,其中array()->lists表示首位元素位置

    针对情况3,这里的lists是指分类:

    • 这是日常开发中,为什么子类实现父类方法会把父类方法覆盖的原因
    • 同理,对于同名方法,分类方法覆盖类方法的原因
    • 这个操作来自一个算法思维LRU即最近最少使用,加这个newlist的目的是由于要使用这个newlist中的方法,这个newlist对于用户的价值要高,即优先调用
    • 会来到1对多的原因 ,主要是有分类的添加,即旧的元素在后面,新的元素在前面 ,究其根本原因主要是优先调用category,这也是分类的意义所在。

    memmovememcpy的区别

    • 在不知道需要平移的内存大小时,需要memmove进行内存平移,保证安全
    • memcpy从原内存地址的起始位置开始拷贝若干个字节到目标内存地址中,速度快

    3. 懒加载类和非懒加载类

    我们在 _read_image方法的第九步中提到实现非加载类,那么什么是非加载类呢?如何将懒加载类变成非懒加载类呢?
    注释中有提到过,如果实现了自定义类的 +load 方法,那么这个类就是非懒加载类了。
    我们自定义一个 Person 类,实现+load方法,在第九步中打上我们的断点,可以看到走到断点中了:

    截屏2021-01-13 下午1.38.03.png

    为什么实现load方法就会变成非懒加载类了?
    因为 load 会提前加载(load方法会在load_images调用,前提是类存在)

    那么不实现+load 方法,是懒加载类,会在什么时候加载呢?
    当然是在调用的时候进行加载了,我们去掉+load 方法的实现,并在 main 中实例化 person :

    int main(int argc, const char * argv[]) {
        @autoreleasepool {
            Person *person = [[Person alloc] init];
        }
        return 0;
    }
    

    然后在realizeClassWithoutSwift方法处下一个断点:

    截屏2021-01-13 下午1.46.44.png

    执行,并通过bt查看堆栈信息:

    截屏2021-01-13 下午1.47.41.png
    从上图可以看到其本质是调用 alloc方法,走了方法的慢速查找流程,所以才走到了realizeClassWithoutSwift

    所以懒加载类 和 非懒加载类的数据加载时机如下图所示:


    image.png

    4.总结

    • readClass主要是读取类,即此时的类仅有地址 + 名称,还没有 data 数据
    • realizeClassWithoutSwift主要是实现类,即将类的 data 数据读取到内存中
      • methodizeClass方法中实现类中方法(协议等)的序列化
      • attachCategories方法中实现类以及分类的数据加载

    综上所述,类从 Mach-O加载到内存的流程图如下所示:


    image.png

    相关文章

      网友评论

        本文标题:[iOS] 类的加载(上)

        本文链接:https://www.haomeiwen.com/subject/cjjeaktx.html