概述
Prometheus 作为云原生和容器平台监控的事实标准,本期我们来看一下如何通过 Prometheus 配置 SLO 监控和告警.
SLO 告警
SLO 的告警, 根据 Google SRE 官方实践, 建议使用如下几个维度的告警:
- Burn Rate(消耗率)Alerts
- Error Budget (错误预算)Alerts
Error Budget
假设我们与用户的合同规定,在 7天内的可用性为 99.9%。这相当于10分钟的Error Budget。
Error Budget 的一种参考实现:
- 计算过去 7 天(或更长如30天, 或更短如3天)的error budget
- 告警级别:
- CRITICAL: error budget >= 90%(或100%)(即过去7天已经不可用9.03分钟; 即availability已达到99.91%, 马上接近99.9% 危险阈值)
- WARNING: error budget >= 75%
📝Notes:
Key Words:
- SLO
- 时间窗口
- 阈值
Burn Rate
假设我们与用户的合同规定,在 30 天内的可用性为 99.9%。这相当于43分钟的Error Budget。如果我们以小增量的小故障来消耗这43分钟,我们的用户可能仍然很高兴和高效。但是,如果我们在关键业务时间发生 43 分钟的单次中断,该怎么办?可以肯定地说,我们的用户会对这种体验感到非常不满意!
为了解决这个问题,Google SRE引入Burn Rate。定义很简单:如果我们在示例中在 30 天内精确地消耗 43 分钟,则将其称为 1 的消耗速率。如果我们以两倍的速度将其消耗,例如,在15天内消耗殆尽,消耗速率为2,依此类推。如您所见,这使我们能够跟踪长期合规性,并就严重的短期问题发出警报。
下图说明了多种burn rate的概念。X 轴表示时间,Y 轴表示剩余error budget。
SLO Burn Rate📝Notes:
本质上, Error Budget >= 100% 的告警, 其实就是 Burn Rate 为 1 的这种特殊情况.
Burn Rate 的一种参考实践:
- 计算过去1小时(或者更短的窗口5m, 或者更长的窗口3h-6h...)的time window 的 burn rate
- 告警级别:
- CRITICAL: burn rate >= 14.4(即按照这个速率, 2天内30天的availability error budget就会用尽)
- WARNING: burn rate >=7.2 (即按照这个速率, 4天内30天的availability error budget就会用尽)
使用 Prometheus 配置 SLO 监控和告警实战
这里以 2 个典型的 SLO 为例:
- HTTP 请求的错误率大于 99.9%(即 在30天的不可用时间为: 43min 11s)
- 99% 的 HTTP 请求延迟时间大于 100ms
HTTP 请求错误率
基本信息:
- 指标为:
http_requests_total
- label 为:
{job=busi}
- 错误的定义: http code 为 5xx, 即
code=~"5xx"
完整的 Prometheus Rule 如下:
groups:
- name: SLOs-http_requests_total
rules:
# 过去5m的http请求错误率
- expr: |
sum(rate(http_requests_total{job="busi",code=~"5.."}[5m]))
/
sum(rate(http_requests_total{job="busi"}[5m]))
labels:
job: busi
record: http_requests_total:burnrate5m
# 过去30m的
- expr: |
sum(rate(http_requests_total{job="busi",code=~"5.."}[30m]))
/
sum(rate(http_requests_total{job="busi"}[30m]))
labels:
job: busi
record: http_requests_total:burnrate30m
# 过去1h的
- expr: |
sum(rate(http_requests_total{job="busi",code=~"5.."}[1h]))
/
sum(rate(http_requests_total{job="busi"}[1h]))
labels:
job: busi
record: http_requests_total:burnrate1h
# 过去6h的
- expr: |
sum(rate(http_requests_total{job="busi",code=~"5.."}[6h]))
/
sum(rate(http_requests_total{job="busi"}[6h]))
labels:
job: busi
record: http_requests_total:burnrate6h
# 过去1d的
- expr: |
sum(rate(http_requests_total{job="busi",code=~"5.."}[1d]))
/
sum(rate(http_requests_total{job="busi"}[1d]))
labels:
job: busi
record: http_requests_total:burnrate1d
# 过去3d的
- expr: |
sum(rate(http_requests_total{job="busi",code=~"5.."}[3d]))
/
sum(rate(http_requests_total{job="busi"}[3d]))
labels:
job: busi
record: http_requests_total:burnrate3d
# 🐾短期内快速燃尽
# 过去5m和过去1h的燃尽率都大于 14.4
- alert: ErrorBudgetBurn
annotations:
message: 'High error budget burn for job=busi (current value: {{ $value }})'
expr: |
sum(http_requests_total:burnrate5m{job="busi"}) > (14.40 * (1-0.99900))
and
sum(http_requests_total:burnrate1h{job="busi"}) > (14.40 * (1-0.99900))
for: 2m
labels:
job: busi
severity: critical
# 🐾中期时间内燃尽过快
# 过去30m和过去6h的燃尽率都大于7.2
- alert: ErrorBudgetBurn
annotations:
message: 'High error budget burn for job=busi (current value: {{ $value }})'
expr: |
sum(http_requests_total:burnrate30m{job="busi"}) > (7.20 * (1-0.99900))
and
sum(http_requests_total:burnrate6h{job="busi"}) > (7.20 * (1-0.99900))
for: 15m
labels:
job: busi
severity: warning
# 🐾长期内错误预算超出
# 过去6h和过去3天的错误预算已燃尽
- alert: ErrorBudgetAlert
annotations:
message: 'High error budget burn for job=busi (current value: {{ $value }})'
expr: |
sum(http_requests_total:burnrate6h{job="busi"}) > (1.00 * (1-0.99900))
and
sum(http_requests_total:burnrate3d{job="busi"}) > (1.00 * (1-0.99900))
for: 3h
labels:
job: busi
severity: warning
HTTP 请求延迟
基本信息:
- 指标为:
http_request_duration_seconds
- label 为:
{job=busi}
- 99% 的 HTTP 请求响应时间都应小于等于 100ms
- 只计算成功的请求(毕竟上面已经算过错误率了)
完整的 Prometheus Rule 如下:
groups:
- name: SLOs-http_request_duration_seconds
rules:
# 过去5m HTTP 请求响应时间大于100ms(0.1s)的百分比
- expr: |
1 - (
sum(rate(http_request_duration_seconds_bucket{job="busi",le="0.1",code!~"5.."}[5m]))
/
sum(rate(http_request_duration_seconds_count{job="busi"}[5m]))
)
labels:
job: busi
latency: "0.1"
record: latencytarget:http_request_duration_seconds:rate5m
# 过去30m的
- expr: |
1 - (
sum(rate(http_request_duration_seconds_bucket{job="busi",le="0.1",code!~"5.."}[30m]))
/
sum(rate(http_request_duration_seconds_count{job="busi"}[30m]))
)
labels:
job: busi
latency: "0.1"
record: latencytarget:http_request_duration_seconds:rate30m
# 过去1h的
- expr: |
1 - (
sum(rate(http_request_duration_seconds_bucket{job="busi",le="0.1",code!~"5.."}[1h]))
/
sum(rate(http_request_duration_seconds_count{job="busi"}[1h]))
)
labels:
job: busi
latency: "0.1"
record: latencytarget:http_request_duration_seconds:rate1h
# 过去2h的
- expr: |
1 - (
sum(rate(http_request_duration_seconds_bucket{job="busi",le="0.1",code!~"5.."}[2h]))
/
sum(rate(http_request_duration_seconds_count{job="busi"}[2h]))
)
labels:
job: busi
latency: "0.1"
record: latencytarget:http_request_duration_seconds:rate2h
# 过去6h的
- expr: |
1 - (
sum(rate(http_request_duration_seconds_bucket{job="busi",le="0.1",code!~"5.."}[6h]))
/
sum(rate(http_request_duration_seconds_count{job="busi"}[6h]))
)
labels:
job: busi
latency: "0.1"
record: latencytarget:http_request_duration_seconds:rate6h
# 过去1d的
- expr: |
1 - (
sum(rate(http_request_duration_seconds_bucket{job="busi",le="0.1",code!~"5.."}[1d]))
/
sum(rate(http_request_duration_seconds_count{job="busi"}[1d]))
)
labels:
job: busi
latency: "0.1"
record: latencytarget:http_request_duration_seconds:rate1d
# 过去3d的
- expr: |
1 - (
sum(rate(http_request_duration_seconds_bucket{job="busi",le="0.1",code!~"5.."}[3d]))
/
sum(rate(http_request_duration_seconds_count{job="busi"}[3d]))
)
labels:
job: busi
latency: "0.1"
record: latencytarget:http_request_duration_seconds:rate3d
# 🐾HTTP 相应时间SLO短中期内快速燃尽
# - 过去5m和过去1h燃尽率大于14.4
# - 或: 过去30m和过去6h燃尽率大于7.2
- alert: LatencyBudgetBurn
annotations:
message: 'High requests latency budget burn for job=busi,latency=0.1 (current value: {{ $value }})'
expr: |
(
latencytarget:http_request_duration_seconds:rate1h{job="busi",latency="0.1"} > (14.4*(1-0.99))
and
latencytarget:http_request_duration_seconds:rate5m{job="busi",latency="0.1"} > (14.4*(1-0.99))
)
or
(
latencytarget:http_request_duration_seconds:rate6h{job="busi",latency="0.1"} > (7.2*(1-0.99))
and
latencytarget:http_request_duration_seconds:rate30m{job="busi",latency="0.1"} > (7.2*(1-0.99))
)
labels:
job: busi
latency: "0.1"
severity: critical
- alert: LatencyBudgetBurn
annotations:
message: 'High requests latency budget burn for job=busi,latency=0.1 (current value: {{ $value }})'
expr: |
(
latencytarget:http_request_duration_seconds:rate1d{job="busi",latency="0.1"} > (3*(1-0.99))
and
latencytarget:http_request_duration_seconds:rate2h{job="busi",latency="0.1"} > (3*(1-0.99))
)
or
(
latencytarget:http_request_duration_seconds:rate3d{job="busi",latency="0.1"} > ((1-0.99))
and
latencytarget:http_request_duration_seconds:rate6h{job="busi",latency="0.1"} > ((1-0.99))
)
labels:
job: busi
latency: "0.1"
severity: warning
🎉🎉🎉
总结
Prometheus 作为云原生和容器平台监控的事实标准,本期我们来看一下如何通过 Prometheus 配置 SLO 监控和告警.
我们例举了 2 个典型的 SLO - HTTP 响应时间和错误率.
错误率的非常好理解, 响应时间的有点绕, 需要大家慢慢消化下.
😼😼😼
📚️参考文档
- SRE error budgets and maintenance windows | Google Cloud Blog
- Google - Site Reliability Engineering (sre.google)
本文由博客一文多发平台 OpenWrite 发布!
网友评论