Spark 行动算子源码分析

作者: Tim在路上 | 来源:发表于2022-02-08 14:08 被阅读0次

    Spark 行动算子源码分析

    action算子都是直接调用sc.runJob(this, func _), 在调用时将func传给分区执行,并在调用后,在Driver端对数据在执行自定义的函数。

    • count 算子

    返回RDD中的元素个数。

    def count(): Long = sc.runJob(this, Utils.getIteratorSize_).sum
    
    def getIteratorSize(iterator: Iterator[_]): Long = {
        var count = 0L
        while (iterator.hasNext) {
          count += 1L
          iterator.next()
        }
        count
      }
    

    可以从runJob的源码实现可以看出count函数是给每一个分区传入了遍历统计的函数,在执行runJob后,将每一个分区元素个数封装为Array进行返回,最后执行一个sum,统计整个的RDD的元素个数。

    def runJob[T, U: ClassTag](
        rdd: RDD[T],
        func: Iterator[T] => U,
        partitions: Seq[Int]): Array[U] = {
      val cleanedFunc = clean(func)
      runJob(rdd, (ctx: TaskContext, it: Iterator[T]) => cleanedFunc(it), partitions)
    }
    

    runJob中clean函数的作用就是递归清理外围类中无用域,降低序列化的开销,防止不必要的不可序列化异常。之后我们会详细的介绍clean的函数。

    def runJob[T, U: ClassTag](
        rdd: RDD[T],
        func: (TaskContext, Iterator[T]) => U,
        partitions: Seq[Int],
        resultHandler: (Int, U) => Unit): Unit = {
      // 判断用户是否stop
      if (stopped.get()) {
        throw new IllegalStateException("SparkContext has been shutdown")
      }
      val callSite = getCallSite
      val cleanedFunc = clean(func)
      logInfo("Starting job: " + callSite.shortForm)
      if (conf.getBoolean("spark.logLineage", false)) {
        logInfo("RDD's recursive dependencies:\n" + rdd.toDebugString)
      }
      // 调用dagScheduler的runJob
      dagScheduler.runJob(rdd, cleanedFunc, partitions, callSite, resultHandler,localProperties.get)
      // 标记进度条已完成
      progressBar.foreach(_.finishAll())
      // 调用checkpoint
      rdd.doCheckpoint()
    }
    

    通过源码可以发现,action算子会生成一个job, 并将该job提交给dagScheduler进行执行。执行完成后在调用checkpoint(), 它会根据依赖依次执行每一个RDD的checkpoint, 只有定义了checkpointData, 才会真正执行。

    def submitJob[T, U](
        rdd: RDD[T],
        func: (TaskContext, Iterator[T]) => U,
        partitions: Seq[Int],
        callSite: CallSite,
        resultHandler: (Int, U) => Unit,
        properties: Properties): JobWaiter[U] = {
      // Check to make sure we are not launching a task on a partition that does not exist.
      val maxPartitions = rdd.partitions.length
      partitions.find(p => p >= maxPartitions || p < 0).foreach { p =>
        throw new IllegalArgumentException(
          "Attempting to access a non-existent partition: " + p + ". " +
            "Total number of partitions: " + maxPartitions)
      }
      // 自增形式获取job id
      val jobId =nextJobId.getAndIncrement()
      if (partitions.size == 0) {
        // Return immediately if the job is running 0 tasks
        return new JobWaiter[U](this, jobId, 0, resultHandler)
      }
    
    assert(partitions.size > 0)
      // 函数转换为Task 迭代器类型
      val func2 = func.asInstanceOf[(TaskContext, Iterator[_]) => _]
      val waiter = new JobWaiter(this, jobId, partitions.size, resultHandler)
    // 将任务异步执行,提交到阻塞队列待线程调用提交任务
    eventProcessLoop.post(JobSubmitted(
        jobId, rdd, func2, partitions.toArray, callSite, waiter,
        SerializationUtils.clone(properties)))
      waiter
    }
    
    override def run(): Unit = {
      try {
        while (!stopped.get) {
          val event =eventQueue.take()
          try {
            // 从阻塞队列中取出JobSubmitted实际
            onReceive(event)
          } catch {
            caseNonFatal(e) =>
              try {
                onError(e)
              } catch {
                caseNonFatal(e) => logError("Unexpected error in " + name, e)
              }
          }
        }
      }
    ...
    private def doOnReceive(event: DAGSchedulerEvent): Unit = event match {
        case JobSubmitted(jobId, rdd, func, partitions, callSite, listener, properties) =>
          // 调用handleJobSubmitted方法
          dagScheduler.handleJobSubmitted(jobId, rdd, func, partitions, callSite, listener, properties)
    ...
    
    private[scheduler] def handleJobSubmitted(jobId: Int,
        finalRDD: RDD[_],
        func: (TaskContext, Iterator[_]) => _,
        partitions: Array[Int],
        callSite: CallSite,
        listener: JobListener,
        properties: Properties) {
      var finalStage: ResultStage = null
      try {
        // New stage creation may throw an exception if, for example, jobs are run on a
        // HadoopRDD whose underlying HDFS files have been deleted.
        // 逆序按照shuffle进行切分stage, 返回最后一个stage
        finalStage = createResultStage(finalRDD, func, partitions, jobId, callSite)
      } catch {
          ...
      }
      // Job submitted, clear internal data.
    barrierJobIdToNumTasksCheckFailures.remove(jobId)
      // 封装activeJob
      val job = new ActiveJob(jobId, finalStage, callSite, listener, properties)
      clearCacheLocs()
      logInfo("Got job %s (%s) with %d output partitions".format(
        job.jobId, callSite.shortForm, partitions.length))
      logInfo("Final stage: " + finalStage + " (" + finalStage.name+ ")")
      logInfo("Parents of final stage: " + finalStage.parents)
      logInfo("Missing parents: " + getMissingParentStages(finalStage))
    
      val jobSubmissionTime = clock.getTimeMillis()
    jobIdToActiveJob(jobId) = job
    activeJobs+= job
      finalStage.setActiveJob(job)
      // 绑定job和stage
      val stageIds =jobIdToStageIds(jobId).toArray
      val stageInfos = stageIds.flatMap(id =>stageIdToStage.get(id).map(_.latestInfo))
     // 监听job
      listenerBus.post(
    SparkListenerJobStart(job.jobId, jobSubmissionTime, stageInfos, properties))
     // 提交stage
      submitStage(finalStage)
    }
    

    总的来说,spark任务在action算子时,会提交一个job, 并将job提交给dagScheduler, dagScheduler 将其封装为JobSubmitted对象,以异步的形式提交,线程拿到JobSubmitted获得其finalStage并判断其为resultStage或ShuffleMapStage, (前者有返回,后者无返回),再逆序的根据宽窄依赖将其划分为不同的stage, 最后将每一个stage,按照分区拆分为Tasksets, 最终提交给TaskManage,待Executor资源准备好后进行申请Task。

    • reduce 算子

    使用关联和合并的方式减少RDD中的元素。

    def reduce(f: (T, T) => T): T = withScope {
      val cleanF = sc.clean(f)
      val reducePartition: Iterator[T] => Option[T] = iter => {
        if (iter.hasNext) {
          Some(iter.reduceLeft(cleanF))
        } else {
          None
        }
      }
      var jobResult: Option[T] = None
      val mergeResult = (index: Int, taskResult: Option[T]) => {
        if (taskResult.isDefined) {
          jobResult = jobResult match {
            case Some(value) => Some(f(value, taskResult.get))
            case None => taskResult
          }
        }
      }
      sc.runJob(this, reducePartition, mergeResult)
      // Get the final result out of our Option, or throw an exception if the RDD was empty
      jobResult.getOrElse(throw new UnsupportedOperationException("empty collection"))
    }
    

    reduce算子可以看出,其定义了reducePartition在每一个分区执行的,即reduceLeft, 同时定义了一个mergeResult用于回收合并元素。mergeResult函数是作为resultHandler传入的,这不同于将结果回收到driver后再进行处理。

    override def taskSucceeded(index: Int, result: Any): Unit = {
      // resultHandler call must be synchronized in case resultHandler itself is not thread safe.
      synchronized {
        resultHandler(index, result.asInstanceOf[T])
      }
      if (finishedTasks.incrementAndGet() == totalTasks) {
    jobPromise.success(())
      }
    }
    

    resultHandler是在任务成功后以同步的形式进行调用。

    • collect 算子

    返回包含所有元素的数组。

    def collect(): Array[T] = withScope {
      val results = sc.runJob(this, (iter: Iterator[T]) => iter.toArray)
      Array.concat(results: _*)
    }
    
    def concat[T: ClassTag](xss: Array[T]*): Array[T] = {
      val b =newBuilder[T]
      b.sizeHint(xss.map(_.length).sum)
      for (xs <- xss) b ++= xs
      b.result()
    }
    

    从源码可以看出collect是将分区迭代器转换为Array, 返回driver后在将其统一回收到一个数组中。

    • take 算子

    取RDD中前num个元素,其工作原理为首先扫描一个分区,根据该分区的结果来估计还需要扫描分区的个数。

    def take(num: Int): Array[T] = withScope {
      val scaleUpFactor = Math.max(conf.getInt("spark.rdd.limit.scaleUpFactor", 4), 2)
      if (num == 0) {
        new Array[T](0)
      } else {
        val buf = new ArrayBuffer[T]
        val totalParts = this.partitions.length
        var partsScanned = 0
        while (buf.size < num && partsScanned < totalParts) {
          // The number of partitions to try in this iteration. It is ok for this number to be
          // greater than totalParts because we actually cap it at totalParts in runJob.
          var numPartsToTry = 1L
          val left = num - buf.size
          if (partsScanned > 0) {
            // If we didn't find any rows after the previous iteration, quadruple and retry.
            // Otherwise, interpolate the number of partitions we need to try, but overestimate
            // it by 50%. We also cap the estimation in the end.
            if (buf.isEmpty) {
              numPartsToTry = partsScanned * scaleUpFactor
            } else {
              // As left > 0, numPartsToTry is always >= 1
              numPartsToTry = Math.ceil(1.5 * left * partsScanned / buf.size).toInt
              numPartsToTry = Math.min(numPartsToTry, partsScanned * scaleUpFactor)
            }
          }
    
          val p = partsScanned.until(math.min(partsScanned + numPartsToTry, totalParts).toInt)
          val res = sc.runJob(this, (it: Iterator[T]) => it.take(left).toArray, p)
    
          res.foreach(buf ++= _.take(num - buf.size))
          partsScanned += p.size
        }
    
        buf.toArray
      }
    }
    
    • takeOrdered 算子

    返回按照指定顺序排序的最小num个元素。

    def takeOrdered(num: Int)(implicit ord: Ordering[T]): Array[T] = withScope {
      if (num == 0) {
        Array.empty
    } else {
        // 在每个分区上创建最小堆,
        val mapRDDs = mapPartitions { items =>
          // Priority keeps the largest elements, so let's reverse the ordering.
          val queue = new BoundedPriorityQueue[T](num)(ord.reverse)
          queue ++= collectionUtils.takeOrdered(items, num)(ord)
    Iterator.single(queue)
        }
        if (mapRDDs.partitions.length == 0) {
          Array.empty
    } else {
          mapRDDs.reduce { (queue1, queue2) =>
            queue1 ++= queue2
            queue1
          }.toArray.sorted(ord)
        }
      }
    }
    

    在每个分区上创建容量为num的最小堆,获取分区上的最小num个元素。然后调用reduce, 将每个分区返回的queue进行合并为num的最小堆。top的实现就是调用了takeOrdered只是排序的顺序相反。

    • lookup 算子

    查看传入key对应的value的值,返回是个数组

    def lookup(key: K): Seq[V] = self.withScope {
      self.partitioner match {
        case Some(p) =>
          val index = p.getPartition(key)
          val process = (it: Iterator[(K, V)]) => {
            val buf = new ArrayBuffer[V]
            for (pair <- it if pair._1 == key) {
              buf += pair._2
            }
            buf
          } : Seq[V]
          val res = self.context.runJob(self, process,Array(index))
          res(0)
        case None =>
          self.filter(_._1 == key).map(_._2).collect()
      }
    }
    

    如果存在分区器,则通过key获取其所在的分区id, 调用runJob获取对应分区并和key相同的元素的value. 否则就通过filter和map,进行collect获取对应的值。

    • aggregate 算子

    聚合分区内的元素,回收分区聚合结果,并将其应用于合并函数。

    def aggregate[U: ClassTag](zeroValue: U)(seqOp: (U, T) => U, combOp: (U, U) => U): U = withScope {
      // Clone the zero value since we will also be serializing it as part of tasks
      var jobResult = Utils.clone(zeroValue, sc.env.serializer.newInstance())
      val cleanSeqOp = sc.clean(seqOp)
      val cleanCombOp = sc.clean(combOp)
      val aggregatePartition = (it: Iterator[T]) => it.aggregate(zeroValue)(cleanSeqOp, cleanCombOp)
      val mergeResult = (index: Int, taskResult: U) => jobResult = combOp(jobResult, taskResult)
      sc.runJob(this, aggregatePartition, mergeResult)
      jobResult
    }
    

    aggregate的实现原理和上文基本一样,定义aggregatePartition传送给分区进行分区内的聚合, mergeResult作为resultHandler在分区执行成功后进行同步执行。

    相关文章

      网友评论

        本文标题:Spark 行动算子源码分析

        本文链接:https://www.haomeiwen.com/subject/doubkrtx.html