然而做用户画像的时候,业务方经常混淆这两点。往往对着过去发生的行为贴一大堆标签,对未来预测毫无概念,在预测分析上半点投入没有。看用户画像报告,或者在CDP里设置推送规则的时候,想当然地认为:过去买了以后也买。最后预测不准,反而把锅甩给用户画像系统。结果自然悲剧。
购买频次不能直接等同于用户喜爱。用户喜爱或者不喜爱,需要更多维度的数据进行分析,并且分析结果得有一定概率的稳定性,才能这么叫。 类似的,很多企业里,业务方和数据分析师,对待这种“爱用者”等等名词使用非常随意、粗糙,基本上都是用消费金额、登录频次等等,高了就算“喜欢”、“爱用”,低了就算“边缘”“尝试”。做出来的结果,自然是毫无准确性可言。不用说,出了问题,比如推荐产品没有人买之类,又算在用户画像头上。
很有可能从源头上,消费高的和消费低的就是两类人,应该通过深入的分析搞清楚到底驱动行为的原因是什么。 从表面上看,用户画像失败的原因,在于:重数据,轻分析。过分投入精力细化已经发生的行为,贴了太多太多事实性标签。对预测投入力度不够,对因果关系分析不够,对用户需求洞察不够。最后判断全靠业务拍脑袋。
基于过去的数据搞一堆标签,很容易;沉淀有预测力、有准确度的用户标签,很难。
看了用户画像以后拍脑袋,和看报表拍脑袋都是拍脑袋,没有本质区别,谢谢。基于过去的数据搞一堆标签,很容易;沉淀有预测力、有准确度的用户标签,很难。不但需要深度的数据分析和建模,更需要反复的,多轮的,对比性测试。不是一蹴而就。所以在业务部门自以为很懂,数据部门喜气洋洋地宣布“打了三万个标签”的时候,祸根就已经埋下来了。
问题的关键是:单纯的事实标签预测能力太差,洞察力太差。不足以满足运营、策划、销售、营销们排兵布阵的需求。大量数据+深入分析,才是解决问题之道。
但用户画像项目正好相反:业务方以为自己很懂!做数据的小哥也以为自己很懂!几乎所有的业务方一提用户画像,都会说这句:“比如,我知道用户是24岁,女性,我就会推一个XX产品给她”大家都以为:我自己很懂,就差一个数了!快给我数。于是业务不停催着数据把过往数据做的再细、再细、再细,数据则在打标签路上一路狂奔。最重要的预测、分析、实验三件套没人搞。




网友评论