美文网首页
Java的AQS

Java的AQS

作者: xbmchina | 来源:发表于2019-07-22 22:15 被阅读0次

    简介

    AQS是AbstractQueuedSynchronizer的简称。AQS提供了一种实现阻塞锁和一系列依赖FIFO等待队列的同步器的框架,为一系列同步器依赖于一个单独的原子变量(state)的同步器提供了一个非常有用的基础。子类们必须定义改变state变量的protected方法,这些方法定义了state是如何被获取或释放的。鉴于此,本类中的其他方法执行所有的排队和阻塞机制。子类也可以维护其他的state变量,但是为了保证同步,必须原子地操作这些变量。

    state的访问方式有三种:

    getState()
    setState()
    compareAndSetState()

    AQS定义两种资源共享方式:
    Exclusive(独占,只有一个线程能执行,如ReentrantLock)
    Share(共享,多个线程可同时执行,如Semaphore/CountDownLatch)

    AQS的设计

    AQS核心

    AQS则实现了对同步状态的管理,以及对阻塞线程进行排队,等待通知等等一些底层的实现处理。AQS的核心也包括了这些方面:同步队列,独占式锁的获取和释放,共享锁的获取和释放以及可中断锁,超时等待锁获取这些特性的实现。

    从AQS提供的模板方法可以分为2类锁机制:

    1.独占式获取与释放同步状态

    void acquire(int arg):独占式获取同步状态,如果获取失败则插入同步队列进行等待;
    void acquireInterruptibly(int arg):与acquire方法相同,但在同步队列中进行等待的时候可以检测中断;
    boolean tryAcquireNanos(int arg, long nanosTimeout):在acquireInterruptibly基础上增加了超时等待功能,在超时时间内没有获得同步状态返回false;
    boolean release(int arg):释放同步状态,该方法会唤醒在同步队列中的下一个节点

    2.共享式获取与释放同步状态

    void acquireShared(int arg):共享式获取同步状态,与独占式的区别在于同一时刻有多个线程获取同步状态;
    void acquireSharedInterruptibly(int arg):在acquireShared方法基础上增加了能响应中断的功能;
    boolean tryAcquireSharedNanos(int arg, long nanosTimeout):在acquireSharedInterruptibly基础上增加了超时等待的功能;
    boolean releaseShared(int arg):共享式释放同步状态

    自定义同步器

    不同的自定义同步器争用共享资源的方式也不同。自定义同步器在实现时只需要实现共享资源state的获取与释放方式即可,至于具体线程等待队列的维护(如获取资源失败入队/唤醒出队等),AQS已经在顶层实现好了。自定义同步器实现时主要实现以下几种方法:

    Java的AQS已实现的实例

    ReentrantLock(独占方式)为例,state初始化为0,表示未锁定状态。A线程lock()时,会调用tryAcquire()独占该锁并将state+1。此后,其他线程再tryAcquire()时就会失败,直到A线程unlock()到state=0(即释放锁)为止,其它线程才有机会获取该锁。当然,释放锁之前,A线程自己是可以重复获取此锁的(state会累加),这就是可重入的概念。但要注意,获取多少次就要释放多么次,这样才能保证state是能回到零态的。

    CountDownLatch(共享方式)以例,任务分为N个子线程去执行,state也初始化为N(注意N要与线程个数一致)。这N个子线程是并行执行的,每个子线程执行完后countDown()一次,state会CAS减1。等到所有子线程都执行完后(即state=0),会unpark()主调用线程,然后主调用线程就会从await()函数返回,继续后余动作。

    一般来说,自定义同步器要么是独占方式,要么是共享方式,但AQS也支持自定义同步器同时实现独占和共享两种方式,如ReentrantReadWriteLock

    AQS的源码分析

    1.同步队列

    上面所述的FIFO等待队列,那么我们看看它到底是个什么东西。

    当共享资源被某个线程占有,其他请求该资源的线程将会阻塞,从而进入同步队列。就数据结构而言,队列的实现方式无外乎两者一是通过数组的形式,另外一种则是链表的形式。AQS中的同步队列则是通过链式方式进行实现。

    /**
       * <p>To enqueue into a CLH lock, you atomically splice it in as new
         * tail. To dequeue, you just set the head field.
         * <pre>
         *      +------+  prev +-----+       +-----+
         * head |      | <---- |     | <---- |     |  tail
         *      +------+       +-----+       +-----+
         * </pre>
    **/
     static final class Node {
            //指示节点在共享模式下等待的标记
            static final Node SHARED = new Node();
            //标记,指示节点在独占模式下等待
            static final Node EXCLUSIVE = null;
            //表示线程已被取消的waitStatus值
            static final int CANCELLED =  1;
           //后继节点的线程处于等待状态,如果当前节点释放同步状态会通知后继节点,使得后继节点的线程能够运行;
            static final int SIGNAL    = -1;
            //waitStatus值,当前节点进入等待队列中
            static final int CONDITION = -2;
            //表示下一个默认值的waitStatus值表示下一次共享式同步状态获取将会无条件传播下去
            static final int PROPAGATE = -3;
    
            volatile int waitStatus;//当前节点状态,上面所列的静态变量
            volatile Node prev; //当前节点/线程的前驱节点 
            volatile Node next;//当前节点/线程的后继节点 
            volatile Thread thread;//加入同步队列的线程引用
            Node nextWaiter;//等待队列中的下一个节点
    
            final boolean isShared() {
                return nextWaiter == SHARED;
            }
    
            final Node predecessor() throws NullPointerException {
                Node p = prev;
                if (p == null)
                    throw new NullPointerException();
                else
                    return p;
            }
    
            Node() {    // Used to establish initial head or SHARED marker
            }
    
            Node(Thread thread, Node mode) {     // Used by addWaiter
                this.nextWaiter = mode;
                this.thread = thread;
            }
    
            Node(Thread thread, int waitStatus) { // Used by Condition
                this.waitStatus = waitStatus;
                this.thread = thread;
            }
        }
    

    上面就是节点的数据结构类型,并且每个节点拥有其前驱和后继节点,很显然这是一个双向队列,可以总结为下图:

    通过对源码的理解现在我们可以清楚的知道这样几点:

    1.节点的数据结构,即AQS的静态内部类Node,节点的等待状态等信息;
    2.同步队列是一个双向队列,AQS通过持有头尾指针管理同步队列;
    3.节点的入队和出队实际上这对应着锁的获取和释放两个操作:获取锁失败进行入队操作,获取锁成功进行出队操作。

    2.独占锁

    2.1独占锁的获取(acquire方法)

    public final void acquire(int arg) {
            //先看同步状态是否获取成功,如果成功则方法结束返回
            //若失败则先调用addWaiter()方法再调用acquireQueued()方法
            if (!tryAcquire(arg) &&
                acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
                selfInterrupt();
    }
    

    acquire函数的流程如下:

    tryAcquire()尝试直接去获取资源,如果成功则直接返回;
    addWaiter()将该线程加入等待队列的尾部,并标记为独占模式;
    acquireQueued()使线程在等待队列中获取资源,一直获取到资源后才返回。如果在整个等待过程中被中断过,则返回true,否则返回false。
    如果线程在等待过程中被中断过,它是不响应的。只是获取资源后才再进行自我中断selfInterrupt(),将中断补上。

    acquire根据当前获得同步状态成功与否做了两件事情:

    1. 成功,则方法结束返回
    2. 失败,则先调用addWaiter()然后在调用acquireQueued()方法。
    2.1.1 tryAcquire(int)

    此方法尝试去获取独占资源。如果获取成功,则直接返回true,否则直接返回false。这也正是tryLock()的语义,还是那句话,当然不仅仅只限于tryLock()。如下是tryAcquire()的源码:

    protected boolean tryAcquire(int arg) {
          throw new UnsupportedOperationException();
    }
    

    什么?直接throw异常?说好的功能呢?好吧,还记得概述里讲的AQS只是一个框架,具体资源的获取/释放方式交由自定义同步器去实现吗?就是这里了!!!AQS这里只定义了一个接口,具体资源的获取交由自定义同步器去实现了(通过state的get/set/CAS)!!!至于能不能重入,能不能加塞,那就看具体的自定义同步器怎么去设计了!!!当然,自定义同步器在进行资源访问时要考虑线程安全的影响。

    这里之所以没有定义成abstract,是因为独占模式下只用实现tryAcquire-tryRelease,而共享模式下只用实现tryAcquireShared-tryReleaseShared。如果都定义成abstract,那么每个模式也要去实现另一模式下的接口。说到底,Doug Lea还是站在咱们开发者的角度,尽量减少不必要的工作量。

    2.1.2 addWaiter
    private Node addWaiter(Node mode) {
            // 1. 将当前线程构建成Node类型
            Node node = new Node(Thread.currentThread(), mode);
            // Try the fast path of enq; backup to full enq on failure
            // 2. 当前尾节点是否为null?
            Node pred = tail;
            if (pred != null) {
                // 2.2 将当前节点尾插入的方式插入同步队列中
                node.prev = pred;
                if (compareAndSetTail(pred, node)) {
                    pred.next = node;
                    return node;
                }
            }
            // 2.1. 当前同步队列尾节点为null,说明当前线程是第一个加入同步队列进行等待的线程
            enq(node);
            return node;
    }
    
    

    程序的逻辑主要分为两个部分:
    1. 当前同步队列的尾节点为null,调用方法enq()插入;
    2. 当前队列的尾节点不为null,则采用尾插入(compareAndSetTail()方法)的方式入队。

    如果 if (compareAndSetTail(pred, node))为false会继续执行到enq()方法,同时很明显compareAndSetTail是一个CAS操作,通常来说如果CAS操作失败会继续自旋(死循环)进行重试

    private Node enq(final Node node) {
        //CAS"自旋",直到成功加入队尾
        for (;;) {
            Node t = tail;
            if (t == null) { // 队列为空,创建一个空的标志结点作为head结点,并将tail也指向它。
                if (compareAndSetHead(new Node()))
                    tail = head;
            } else {//正常流程,放入队尾
                node.prev = t;
                if (compareAndSetTail(t, node)) {
                    t.next = node;
                    return t;
                }
            }
        }
    }
    

    对enq()方法可以做这样的总结:
    在当前线程是第一个加入同步队列时,调用compareAndSetHead(new Node())方法,完成链式队列的头结点的初始化;
    自旋不断尝试CAS尾插入节点直至成功为止。

    2.1.3 acquireQueued

    通过tryAcquire()和addWaiter(),该线程获取资源失败,已经被放入等待队列尾部了。该线程下一步该干什么了呢:进入等待状态休息,直到其他线程彻底释放资源后唤醒自己,自己再拿到资源,然后就可以去干自己想干的事了。没错,就是这样!是不是跟医院排队拿号有点相似.

    final boolean acquireQueued(final Node node, int arg) {
        boolean failed = true;//标记是否成功拿到资源
        try {
            boolean interrupted = false;//标记等待过程中是否被中断过
            
            //又是一个“自旋”!
            for (;;) {
                final Node p = node.predecessor();//拿到前驱
                //如果前驱是head,即该结点已成老二,那么便有资格去尝试获取资源(可能是老大释放完资源唤醒自己的,当然也可能被interrupt了)。
                if (p == head && tryAcquire(arg)) {
                    setHead(node);//拿到资源后,将head指向该结点。所以head所指的标杆结点,就是当前获取到资源的那个结点或null。
                    p.next = null; // setHead中node.prev已置为null,此处再将head.next置为null,就是为了方便GC回收以前的head结点。也就意味着之前拿完资源的结点出队了!
                    failed = false;
                    return interrupted;//返回等待过程中是否被中断过
                }
                
                //如果自己可以休息了,就进入waiting状态,直到被unpark()
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    interrupted = true;//如果等待过程中被中断过,哪怕只有那么一次,就将interrupted标记为true
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }
    

    其中有两个方法需要了解的shouldParkAfterFailedAcquire和parkAndCheckInterrupt

    shouldParkAfterFailedAcquire()
    此方法主要用于检查状态,看看自己是否真的可以去休息了。

    private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
        int ws = pred.waitStatus;//拿到前驱的状态
        if (ws == Node.SIGNAL)
            //如果已经告诉前驱拿完号后通知自己一下,那就可以安心休息了
            return true;
        if (ws > 0) {
            /*
             * 如果前驱放弃了,那就一直往前找,直到找到最近一个正常等待的状态,并排在它的后边。
             * 注意:那些放弃的结点,由于被自己“加塞”到它们前边,它们相当于形成一个无引用链,稍后就会被保安大叔赶走了(GC回收)!
             */
            do {
                node.prev = pred = pred.prev;
            } while (pred.waitStatus > 0);
            pred.next = node;
        } else {
             //如果前驱正常,那就把前驱的状态设置成SIGNAL,告诉它拿完号后通知自己一下。有可能失败,人家说不定刚刚释放完呢!
            compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
        }
        return false;
    }
    

    整个流程中,如果前驱结点的状态不是SIGNAL,那么自己就不能安心去休息,需要去找个安心的休息点,同时可以再尝试下看有没有机会轮到自己拿号。

    parkAndCheckInterrupt()
    如果线程找好安全休息点后,那就可以安心去休息了。此方法就是让线程去休息,真正进入等待状态。

    private final boolean parkAndCheckInterrupt() {
            LockSupport.park(this);
            return Thread.interrupted();
        }
    
    小结:

    acquireQueued的主要流程:

    1.调用自定义同步器的tryAcquire()尝试直接去获取资源,如果成功则直接返回;
    2.没成功,则addWaiter()将该线程加入等待队列的尾部,并标记为独占模式;
    3.acquireQueued()使线程在等待队列中休息,有机会时(轮到自己,会被unpark())会去尝试获取资源。获取到资源后才返回。如果在整个等待过程中被中断过,则返回true,否则返回false。
    4.如果线程在等待过程中被中断过,它是不响应的。只是获取资源后才再进行自我中断selfInterrupt(),将中断补上。

    2.2 独占锁的释放(release方法)

    它会释放指定量的资源,如果彻底释放了(即state=0),它会唤醒等待队列里的其他线程来获取资源。

    public final boolean release(int arg) {
        if (tryRelease(arg)) {
            Node h = head;//找到头结点
            if (h != null && h.waitStatus != 0)
                unparkSuccessor(h);//唤醒等待队列里的下一个线程
            return true;
        }
        return false;
    }
    

    2.2.1 tryRelease

    它的返回值用来判断该线程是否已经完成释放掉资源了!所以自定义同步器在设计tryRelease()的时候要明确这一点!!

     protected boolean tryRelease(int arg) {
            throw new UnsupportedOperationException();
     }
    

    跟tryAcquire()一样,这个方法是需要独占模式的自定义同步器去实现的。正常来说,tryRelease()都会成功的,因为这是独占模式,该线程来释放资源,那么它肯定已经拿到独占资源了,直接减掉相应量的资源即可(state-=arg),也不需要考虑线程安全的问题。但要注意它的返回值,上面已经提到了,release()是根据tryRelease()的返回值来判断该线程是否已经完成释放掉资源了!所以自义定同步器在实现时,如果已经彻底释放资源(state=0),要返回true,否则返回false。

    2.2.2 unparkSuccessor

    此方法用于唤醒等待队列中下一个线程。

    private void unparkSuccessor(Node node) {
        //这里,node一般为当前线程所在的结点。
        int ws = node.waitStatus;
        if (ws < 0)//置零当前线程所在的结点状态,允许失败。
            compareAndSetWaitStatus(node, ws, 0);
    
        Node s = node.next;//找到下一个需要唤醒的结点s
        if (s == null || s.waitStatus > 0) {//如果为空或已取消
            s = null;
            for (Node t = tail; t != null && t != node; t = t.prev)
                if (t.waitStatus <= 0)//从这里可以看出,<=0的结点,都是还有效的结点。
                    s = t;
        }
        if (s != null)
            LockSupport.unpark(s.thread);//唤醒
    }
    

    一句话概括:用unpark()唤醒等待队列中最前边的那个未放弃线程

    3.共享锁

    3.1 共享锁的获取acquireShared(int)

    此方法是共享模式下线程获取共享资源的顶层入口。它会获取指定量的资源,获取成功则直接返回,获取失败则进入等待队列,直到获取到资源为止,整个过程忽略中断。下面是acquireShared()的源码:

    public final void acquireShared(int arg) {
          if (tryAcquireShared(arg) < 0)
              doAcquireShared(arg);
    }
    

    这里tryAcquireShared()依然需要自定义同步器去实现。但是AQS已经把其返回值的语义定义好了:负值代表获取失败;0代表获取成功,但没有剩余资源;正数表示获取成功,还有剩余资源,其他线程还可以去获取。所以这里acquireShared()的流程就是:

    tryAcquireShared()尝试获取资源,成功则直接返回;
    失败则通过doAcquireShared()进入等待队列,直到获取到资源为止才返回。

    3.1.1 doAcquireShared
    private void doAcquireShared(int arg) {
        final Node node = addWaiter(Node.SHARED);//加入队列尾部
        boolean failed = true;//是否成功标志
        try {
            boolean interrupted = false;//等待过程中是否被中断过的标志
            for (;;) {
                final Node p = node.predecessor();//前驱
                if (p == head) {//如果到head的下一个,因为head是拿到资源的线程,此时node被唤醒,很可能是head用完资源来唤醒自己的
                    int r = tryAcquireShared(arg);//尝试获取资源
                    if (r >= 0) {//成功
                        setHeadAndPropagate(node, r);//将head指向自己,还有剩余资源可以再唤醒之后的线程
                        p.next = null; // help GC
                        if (interrupted)//如果等待过程中被打断过,此时将中断补上。
                            selfInterrupt();
                        failed = false;
                        return;
                    }
                }
                
                //判断状态,寻找安全点,进入waiting状态,等着被unpark()或interrupt()
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    interrupted = true;
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }
    

    有木有觉得跟acquireQueued()很相似?对,其实流程并没有太大区别。只不过这里将补中断的selfInterrupt()放到doAcquireShared()里了,而独占模式是放到acquireQueued()之外,其实都一样

    注意:
    跟独占模式比,还有一点需要注意的是,这里只有线程是head.next时(“老二”),才会去尝试获取资源,有剩余的话还会唤醒之后的队友。那么问题就来了,假如老大用完后释放了5个资源,而老二需要6个,老三需要1个,老四需要2个。老大先唤醒老二,老二一看资源不够,他是把资源让给老三呢,还是不让?答案是否定的!老二会继续park()等待其他线程释放资源,也更不会去唤醒老三和老四了。独占模式,同一时刻只有一个线程去执行,这样做未尝不可;但共享模式下,多个线程是可以同时执行的,现在因为老二的资源需求量大,而把后面量小的老三和老四也都卡住了。当然,这并不是问题,只是AQS保证严格按照入队顺序唤醒罢了(保证公平,但降低了并发)。

    3.1.2 setHeadAndPropagate(Node, int)

    此方法在setHead()的基础上多了一步,就是自己苏醒的同时,如果条件符合(比如还有剩余资源),还会去唤醒后继结点,毕竟是共享模式!

    private void setHeadAndPropagate(Node node, int propagate) {
        Node h = head; 
        setHead(node);//head指向自己
         //如果还有剩余量,继续唤醒下一个邻居线程
        if (propagate > 0 || h == null || h.waitStatus < 0) {
            Node s = node.next;
            if (s == null || s.isShared())
                doReleaseShared();
        }
    }
    

    3.2 共享锁的释放releaseShared

    此方法是共享模式下线程释放共享资源的顶层入口。它会释放指定量的资源,如果成功释放且允许唤醒等待线程,它会唤醒等待队列里的其他线程来获取资源。下面是releaseShared()的源码:

    public final boolean releaseShared(int arg) {
        if (tryReleaseShared(arg)) {//尝试释放资源
            doReleaseShared();//唤醒后继结点
            return true;
        }
        return false;
    }
    

    此方法的流程也比较简单,一句话:释放掉资源后,唤醒后继。跟独占模式下的release()相似,但有一点稍微需要注意:独占模式下的tryRelease()在完全释放掉资源(state=0)后,才会返回true去唤醒其他线程,这主要是基于独占下可重入的考量;而共享模式下的releaseShared()则没有这种要求,共享模式实质就是控制一定量的线程并发执行,那么拥有资源的线程在释放掉部分资源时就可以唤醒后继等待结点。

    例如,资源总量是13,A(5)和B(7)分别获取到资源并发运行,C(4)来时只剩1个资源就需要等待。A在运行过程中释放掉2个资源量,然后tryReleaseShared(2)返回true唤醒C,C一看只有3个仍不够继续等待;随后B又释放2个,tryReleaseShared(2)返回true唤醒C,C一看有5个够自己用了,然后C就可以跟A和B一起运行。而ReentrantReadWriteLock读锁的tryReleaseShared()只有在完全释放掉资源(state=0)才返回true,所以自定义同步器可以根据需要决定tryReleaseShared()的返回值。

    private void doReleaseShared() {
        for (;;) {
            Node h = head;
            if (h != null && h != tail) {
                int ws = h.waitStatus;
                if (ws == Node.SIGNAL) {
                    if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
                        continue;
                    unparkSuccessor(h);//唤醒后继
                }
                else if (ws == 0 &&
                         !compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
                    continue;
            }
            if (h == head)// head发生变化
                break;
        }
    }
    

    总结

    以上总结均来自参考文章。有兴趣的同学可以看看大神们的总结。

    参考文章

    https://www.cnblogs.com/waterystone/p/4920797.html
    https://juejin.im/post/5aeb07ab6fb9a07ac36350c8

    最后

    如果对 Java、大数据感兴趣请长按二维码关注一波,我会努力带给你们价值。觉得对你哪怕有一丁点帮助的请帮忙点个赞或者转发哦。
    关注公众号【爱编码】,小编会一直更新文章的哦。

    相关文章

      网友评论

          本文标题:Java的AQS

          本文链接:https://www.haomeiwen.com/subject/eeodkctx.html