美文网首页
2020-02-25 Kitaev model on a hex

2020-02-25 Kitaev model on a hex

作者: 低维量子系统 | 来源:发表于2020-02-25 11:52 被阅读0次

    note:

    • 参考资料见前面的笔记。
    • 原文的附录标题是Solution of a BCS Hamiltonian。
    • 文献中某些公式中的打印错误得以修正。

    Solution of a BCS Hamiltonian

    H=\sum_k \epsilon_k d_k^{\dagger}d_k + \frac {\Delta_k} {2} (id_k^{\dagger}d^{\dagger}_{-k}-id_{-k}d_k)

    With

    • d_k: fermion operators

    • \epsilon_{-k}=\epsilon_k

    • \Delta_{-k}=-\Delta_{k}


    By a global gauge transformation

    • d_k^{\dagger} \rightarrow e^{-i\frac{\pi}{4}} d_k^{\dagger}
    • d_k \rightarrow e^{+i\frac{\pi} {4}} d_k

    note:

    • d_k^{\dagger} d_k \rightarrow e^{-i \frac{\pi} {4} } d_k^{\dagger} e^{+i\frac{\pi} {4}} d_k = d_k^{\dagger} d_k
    • d_k^{\dagger} d^{\dagger}_{-k} \rightarrow e^{-i\frac{\pi}{4}} d_k^{\dagger} e^{-i\frac{\pi}{4}} d_{-k}^{\dagger} = e^{-i\frac{\pi} {2} }d_k^{\dagger} d_{-k}^{\dagger} = - i d_k^{\dagger} d_{-k}^{\dagger}
    • d_{-k} d_k \rightarrow e^{+i\frac{\pi} {4}} d_{-k} e^{+i\frac{\pi} {4}} d_{k} = e^{+i\frac{\pi} {2}} d_{-k} d_{k} = i d_{-k} d_{k}

    We shall have

    H=\sum_k \epsilon_k d_k^{\dagger}d_k + \frac {\Delta_k} {2} (d_k^{\dagger} d^{\dagger}_{-k}+d_{-k}d_k)


    Using the property of \epsilon_k, H can be expressed in a more symmetric form as

    H=\sum_k \frac{\epsilon_k}{2} (d_k^{\dagger}d_k+d_{-k}^{\dagger}d_{-k}) + \frac{\Delta_k}{2}(d_k^{\dagger}d^{\dagger}_{-k}+d_{-k} d_k)


    Let us denote

    • d_k \rightarrow a_k
    • d_{-k} \rightarrow b_k

    And then we obtain

    H=\sum_k [ \frac{\epsilon_k} {2} (a^{\dagger}_k a_k+b^{\dagger}_k b_k)+\frac{\Delta_k} {2} (a^{\dagger}_k b^{\dagger}_k +b_k a_k) ]

    It is clear that

    • a_{-k}=b_k, a_{-k}^{\dagger}=b_k^{\dagger}
    • b_{-k}=a_k, b_{-k}^{\dagger}=a_k^{\dagger}

    Bogoliubov transformations

    can help us to get a diagonal Hamiltonian.

    • A_k = u_k a_k + v_k b_k^{\dagger}, A_k^{\dagger} = u_k a_k^{\dagger} + v_k b_k
    • B_k = v_k a_k^{\dagger} - u_k b_k, B_k^{\dagger} = v_k a_k - u_k b_k^{\dagger}

    u_k and v_k are real numbers. We demand that A_k and B_k are fermion operators with

    • \{ A_k, A_k^{\dagger} \} = \{ B_k, B_k^{\dagger} \} =1

    Thereby, it is straightforward to find that u_k and v_k should satisfy the condition

    • u_k^2+v_k^2=1.

    We shall parameterize them as

    • u_k=\cos \theta_k, v_k = \sin \theta_k
    • Some useful equations
      • B_{-k}^{\dagger}=-A_k^{\dagger}
      • B_{-k}=-A_k

      Proof
      \Leftarrow B_{-k}= v_{-k} a_{-k}^{\dagger} - u_{-k} b_{-k}
      \Leftarrow B_{-k}=- v_{k} a_{-k}^{\dagger} - u_{k} b_{-k}
      \Leftarrow B_{-k}=- v_{k} b_{k}^{\dagger} - u_{k} a_{k} = - A_k


    Bogoliubov inverse transformations
    • a_k=u_kA_k + v_k B_k^{\dagger}, a_k^{\dagger}=u_kA_k ^{\dagger}+ v_k B_k

    • b_k=v_kA_k^{\dagger} - u_k B_k, b_k^{\dagger}=v_kA_k - u_k B_k^{\dagger}


    We substitute the above transformations into the Hamiltonian,

    and will get

    H=\sum_k[\frac{\epsilon_k}{2}(u_k^2-v_k^2)+\Delta_k u_k v_k](A_k^{\dagger}A_k +B_k^{\dagger} B_k)

    +[\epsilon_ku_kv_k-\frac{\Delta_k}{2}(u_k^2-v_k^2)](A_k^{\dagger}B_k^{\dagger} + B_k A_k)


    solutions of u_k and v_k

    We need to choose some u_k and v_k so that the non-diagonal term vanishes. In other words,

    • \epsilon_k u_k v_k - \frac {\Delta_k} {2} (u_k^2-v_k^2)=0

      \Rightarrow \epsilon_k \sin 2\theta_k - \Delta_k \cos 2\theta_k = 0

      \Rightarrow \tan 2\theta_k = \frac{\Delta_k}{\epsilon_k}

    • u_k^2-v_k^2 = \cos 2\theta_k = \frac{1} {\sqrt{1+\tan^2 2\theta_k}}=\frac{\epsilon_k}{\sqrt{\epsilon_k^2+\Delta_k^2}}

    • u_kv_k=\frac{1}{2}\sin 2\theta_k = \frac{1}{2}\tan 2\theta_k \cos 2\theta_k = \frac{1}{2}\frac{\Delta_k}{\sqrt{\epsilon_k^2+\Delta_k^2}}

    • u_k^2 = \frac{1} {2}(1+\frac{\epsilon_k}{\sqrt{\epsilon_k^2+\Delta_k^2}})

    • v_k^2 = \frac{1}{2}(1-\frac{\epsilon_k}{\sqrt{\epsilon_k^2+\Delta_k^2}})


    solution of the spectrum

    H=\sum_k[ \frac{\epsilon_k} {2} (u_k^2-v_k^2)+\Delta_k u_k v_k](A_k^{\dagger}A_k +B_k^{\dagger} B_k)

    +[\epsilon_ku_kv_k-\frac{\Delta_k}{2}(u_k^2-v_k^2)](A_k^{\dagger}B_k^{\dagger} + B_k A_k)

    \Rightarrow H=\sum_k[\frac{\epsilon_k}{2}(u_k^2-v_k^2)+\Delta_k u_k v_k](A_k^{\dagger}A_k +B_k^{\dagger}B_k)

    \Rightarrow H=\sum_k \frac {\sqrt{\epsilon_k^2 + \Delta^2_k}} {2} (A_k^{\dagger}A_k +B_k^{\dagger}B_k)


    Since B_{-k}^{\dagger}=-A_k^{\dagger} and B_{-k}=-A_k,
    the Hamiltonian can be further simplified as
    \Rightarrow H=\sum_k \sqrt{\epsilon_k^2 + \Delta^2_k}A_k^{\dagger}A_k


    The ground state is the one without any quasiparticle, thus

    A_k \vert g\rangle=0 for any k.

    相关文章

      网友评论

          本文标题:2020-02-25 Kitaev model on a hex

          本文链接:https://www.haomeiwen.com/subject/eibzqhtx.html