美文网首页
JAVA基础之Fork/Join框架

JAVA基础之Fork/Join框架

作者: 冰河winner | 来源:发表于2019-12-11 00:02 被阅读0次

    1、核心思想

    Fork/Join框架是Java 7提供的一个用于并行执行任务的框架, 核心思想就是把大任务分割成若干个小任务,最终汇总每个小任务结果后得到大任务结果,其实现思想与MapReduce有异曲同工之妙。

    Fork就是把一个大任务切分为若干子任务并行的执行,Join就是合并这些子任务的执行结果,最后得到这个大任务的结果。比如计算1+2+…+10000,可以分割成10个子任务,每个子任务分别对1000个数进行求和,最终汇总这10个子任务的结果。Fork/Join的运行流程图如下:

    1.png

    Fork/Join框架使用一个巧妙的算法来平衡线程的负载,称为工作窃取(work-stealing)算法。工作窃取的运行流程图如下:

    2.png

    假如我们需要做一个比较大的任务,我们可以把这个任务分割为若干互不依赖的子任务,为了减少线程间的竞争,于是把这些子任务分别放到不同的队列里,并为每个队列创建一个单独的线程来执行队列里的任务,线程和队列一一对应,比如A线程负责处理A队列里的任务。但是有的线程会先把自己队列里的任务干完,而其他线程对应的队列里还有任务等待处理。干完活的线程与其等着,不如去帮其他线程干活,于是它就去其他线程的队列里窃取一个任务来执行。而在这时它们会访问同一个队列,所以为了减少窃取任务线程和被窃取任务线程之间的竞争,通常会使用双端队列,被窃取任务线程永远从双端队列的头部拿任务执行,而窃取任务的线程永远从双端队列的尾部拿任务执行。

    工作窃取算法的优点是充分利用线程进行并行计算,并减少了线程间的竞争,其缺点是在某些情况下还是存在竞争,比如双端队列里只有一个任务时。并且消耗了更多的系统资源,比如创建多个线程和多个双端队列。

    2、应用实例

    Fork/Join框架主要由两部分组成:

    • 分割任务。首先我们需要有一个fork类来把大任务分割成子任务,有可能子任务还是很大,所以还需要不停的分割,直到分割出的子任务足够小。
    • 执行任务并合并结果。分割的子任务分别放在双端队列里,然后几个启动线程分别从双端队列里获取任务执行。子任务执行完的结果都统一放在一个队列里,启动一个线程从队列里拿数据,然后合并这些数据。

    Fork/Join使用两个类来完成以上两件事情:

    • ForkJoinTask
      我们要使用ForkJoin框架,必须首先创建一个ForkJoin任务。它提供在任务中执行fork()join()操作的机制,通常情况下我们不需要直接继承ForkJoinTask类,而只需要继承它的子类,Fork/Join框架提供了以下两个子类:
      • RecursiveAction:用于没有返回结果的任务。
      • RecursiveTask :用于有返回结果的任务。
    • ForkJoinPool
      ForkJoinTask需要通过ForkJoinPool来执行,任务分割出的子任务会添加到当前工作线程所维护的双端队列中,进入队列的头部。当一个工作线程的队列里暂时没有任务时,它会随机从其他工作线程的队列的尾部获取一个任务。

    让我们通过一个简单的需求来使用下Fork/Join框架,需求是:计算1~8的累加结果。

    使用Fork/Join框架首先要考虑到的是如何分割任务,如果我们希望每个子任务最多执行两个数的相加,那么设置分割的阈值是2,由于是8个数字相加,所以Fork/Join框架会把这个任务fork成两个子任务,子任务一负责计算1+2+3+4,子任务二负责计算3+4+5+6,然后子任务会继续分隔,直到累加的数字将为两个,最后逐层join子任务的结果。

    public class CountTask extends RecursiveTask<Integer> {
    
        private static final int THRESHHOLD = 2;
        private int start;
        private int end;
    
        public CountTask(int start, int end) {
            this.start = start;
            this.end = end;
        }
    
        @Override
        protected Integer compute() {
            System.out.println(start + " - " + end + " begin");
            int sum = 0;
            boolean canCompute = (end - start) <= THRESHHOLD;
            if (canCompute) { // 达到了计算条件,则直接执行
                for (int i = start; i <= end; i++) {
                    sum += i;
                }
            } else { // 不满足计算条件,则分割任务
                int middle = (start + end) / 2;
    
                CountTask leftTask = new CountTask(start, middle);
                CountTask rightTask = new CountTask(middle + 1, end);
    
                leftTask.fork(); // 执行子任务
                rightTask.fork();
                int leftResult = leftTask.join(); // 等待子任务执行完毕
                int rightResult = rightTask.join();
    
                sum = leftResult + rightResult; // 合并子任务的计算结果
            }
            System.out.println(start + " - " + end + " end");
            return sum;
        }
    
        public static void main(String[] args) throws InterruptedException, ExecutionException {
            ForkJoinPool pool = new ForkJoinPool();
            CountTask task = new CountTask(1, 8);
            Future<Integer> future = pool.submit(task);
            if (task.isCompletedAbnormally()) {
                System.out.println(task.getException());
            } else {
                System.out.println("result: " + future.get());
            }
    
        }
    
    }
    

    打印结果:

    1 - 8 begin
    1 - 4 begin
    5 - 8 begin
    5 - 6 begin
    5 - 6 end
    1 - 2 begin
    1 - 2 end
    3 - 4 begin
    3 - 4 end
    7 - 8 begin
    7 - 8 end
    5 - 8 end
    1 - 4 end
    1 - 8 end
    result: 36

    由于每个任务是由线程池执行的,每次的执行顺序会有不同,但是,父任务肯定在所有子任务之后完成,比如1-8的计算肯定在子任务1-4、5-8之后完成,但是1-4、5-8的完成顺序是不确定的。

    ForkJoinTask在执行的时候可能会抛出异常,但是我们没办法在主线程里直接捕获异常,所以ForkJoinTask提供了isCompletedAbnormally()方法来检查任务是否已经抛出异常或已经被取消了,并且可以通过ForkJoinTaskgetException方法获取异常。

    getException方法返回Throwable对象,如果任务被取消了则返回CancellationException。如果任务没有完成或者没有抛出异常则返回null。

    3、 源码解读

    3.png

    3.1 ForkJoinPool

    ForkJoinTask代表一个需要执行的任务,真正执行这些任务的线程放在一个ForkJoinPool里面。ForkJoinPool是一个可以执行ForkJoinTaskExcuteService,与ExcuteService不同的是它采用了work-stealing模式:所有在池中的空闲线程尝试去执行其他线程创建的子任务,这样就很少有线程处于空闲状态,非常高效。

    池中维护着ForkJoinWorkerThread对象数组:

        /**
         * Array holding all worker threads in the pool.  Initialized upon
         * construction. Array size must be a power of two.  Updates and
         * replacements are protected by scanGuard, but the array is
         * always kept in a consistent enough state to be randomly
         * accessed without locking by workers performing work-stealing,
         * as well as other traversal-based methods in this class, so long
         * as reads memory-acquire by first reading ctl. All readers must
         * tolerate that some array slots may be null.
              */
         ForkJoinWorkerThread[] workers;
    

    ForkJoinWorkerThread为任务的执行线程,workers数组在构造方法中初始化,其大小必须为2的n次方(方便将取模转换为移位运算)。

    ForkJoinPool初始化方法:

    // initialize workers array with room for 2*parallelism if possible
    int n = parallelism << 1;
    if (n >= MAX_ID)
      n = MAX_ID;
    else { // See Hackers Delight, sec 3.2, where n < (1 << 16)
      n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8;
    }
    workers = new ForkJoinWorkerThread[n + 1];
    

    可见,workers数组大小由parallelism属性决定,parallelism默认为处理器个数,workers数组默认大小为处理器数量2*,但是不能超过MAX_ID

    private static final int MAX_ID = 0x7fff; // max poolIndex

    什么情况下需要添加线程呢?当新的任务到来,线程池会通知其他线程前去处理,如果这时没有处于等待的线程或者处于活动的线程非常少(这是通过ctl属性来判断的),就会往线程池中添加线程:

    /**
     * Tries to create and start a worker; minimally rolls back counts
     * on failure.
          */
        private void addWorker() {
        Throwable ex = null;
        ForkJoinWorkerThread t = null;
        try {
            t = factory.newThread(this);
        } catch (Throwable e) {
            ex = e;
        }
        if (t == null) {  // null or exceptional factory return
            long c;       // adjust counts
            do {} while (!UNSAFE.compareAndSwapLong
                         (this, ctlOffset, c = ctl,
                          (((c - AC_UNIT) & AC_MASK) |
                           ((c - TC_UNIT) & TC_MASK) |
                           (c & ~(AC_MASK|TC_MASK)))));
            // Propagate exception if originating from an external caller
            if (!tryTerminate(false) && ex != null &&
                !(Thread.currentThread() instanceof ForkJoinWorkerThread))
                UNSAFE.throwException(ex);
        }
        else
            t.start();
        }
    

    增加线程通过ForkJoinWorkerThreadFactory来实现,底层实现方法为:

        /**
         * Creates a ForkJoinWorkerThread operating in the given pool.
         *
         * @param pool the pool this thread works in
         * @throws NullPointerException if pool is null
         */
        protected ForkJoinWorkerThread(ForkJoinPool pool) {
            super(pool.nextWorkerName());
            this.pool = pool;
            int k = pool.registerWorker(this);
            poolIndex = k;
            eventCount = ~k & SMASK; // clear wait count
            locallyFifo = pool.locallyFifo;
            Thread.UncaughtExceptionHandler ueh = pool.ueh;
            if (ueh != null)
                setUncaughtExceptionHandler(ueh);
            setDaemon(true);
        }
    

    可见,该线程生成后需要回调ForkJoinPool. registerWorker在线程池中完成注册:

        /**
         * Callback from ForkJoinWorkerThread constructor to
         * determine its poolIndex and record in workers array.
         *
         * @param w the worker
         * @return the worker's pool index
         */
        final int registerWorker(ForkJoinWorkerThread w) {
            /*
             * In the typical case, a new worker acquires the lock, uses
             * next available index and returns quickly.  Since we should
             * not block callers (ultimately from signalWork or
             * tryPreBlock) waiting for the lock needed to do this, we
             * instead help release other workers while waiting for the
             * lock.
             */
            for (int g;;) {
                ForkJoinWorkerThread[] ws;
                if (((g = scanGuard) & SG_UNIT) == 0 &&
                    UNSAFE.compareAndSwapInt(this, scanGuardOffset,
                                             g, g | SG_UNIT)) {
                    int k = nextWorkerIndex;
                    try {
                        if ((ws = workers) != null) { // ignore on shutdown
                            int n = ws.length;
                            if (k < 0 || k >= n || ws[k] != null) {
                                for (k = 0; k < n && ws[k] != null; ++k)
                                    ;
                                if (k == n)
                                    ws = workers = Arrays.copyOf(ws, n << 1);
                            }
                            ws[k] = w;
                            nextWorkerIndex = k + 1;
                            int m = g & SMASK;
                            g = (k > m) ? ((m << 1) + 1) & SMASK : g + (SG_UNIT<<1);
                        }
                    } finally {
                        scanGuard = g;
                    }
                    return k;
                }
                else if ((ws = workers) != null) { // help release others
                    for (ForkJoinWorkerThread u : ws) {
                        if (u != null && u.queueBase != u.queueTop) {
                            if (tryReleaseWaiter())
                                break;
                        }
                    }
                }
            }
        }
    

    整个框架大量采用顺序锁,好处是不用阻塞,不好的地方是会有额外的循环。这里也是通过循环来注册这个线程,在循环的过程中有两种情况发生:

    • compareAndSwapInt操作成功,扫描workers数组,找到一个为空的项,并把新创建的线程放在这个位置;如果没有找到,表示数组大小不够,则将数组扩大2倍;
    • compareAndSwapInt操作失败,需要循环重新尝试直接成功为止,从代码中可以看出,即使是失败了,也不忘做一些额外的事:通知其他线程去执行没有完成的任务

    ForkJoinPool可以通过execute提交ForkJoinTask任务,然后通过ForkJoinWorkerThread. pushTask实现。

        /**
         * Unless terminating, forks task if within an ongoing FJ computation in the
         * current pool, else submits as external task.
         */
        private <T> void forkOrSubmit(ForkJoinTask<T> task) {
            ForkJoinWorkerThread w;
            Thread t = Thread.currentThread();
            if (shutdown)
                throw new RejectedExecutionException();
            if ((t instanceof ForkJoinWorkerThread) && (w = (ForkJoinWorkerThread) t).pool == this)
                w.pushTask(task);
            else
                addSubmission(task);
        }
    
        /**
         * Arranges for (asynchronous) execution of the given task.
         *
         * @param task
         *            the task
         * @throws NullPointerException
         *             if the task is null
         * @throws RejectedExecutionException
         *             if the task cannot be scheduled for execution
         */
        public void execute(ForkJoinTask<?> task) {
            if (task == null)
                throw new NullPointerException();
            forkOrSubmit(task);
        }
    

    除此之外,ForkJoinPool还覆盖并重载了从ExecutorService继承过来的executesubmit方法外,可以接受Runnable``与Callable类型的任务。

    ExecutorService一样,ForkJoinPool可以调用shutdown()shutdownNow()来终止线程,会先设置每个线程的任务状态为CANCELLED,然后调用Threadinterrupt方法来终止每个线程。

    ExcuteService不同的是,ForkJoinPool除了可以执行Runnable任务外,还可以执行ForkJoinTask任务; ExcuteService中处于后面的任务需要等待前面任务执行后才有机会执行,而ForkJoinPool会采用work-stealing模式帮助其他线程执行任务,即ExcuteService解决的是并发问题,而ForkJoinPool解决的是并行问题

    3.2 ForkJoinWorkerThread

    ForkJoinWorkerThread继承自Thread,受ForkJoinPool支配用以执行ForkJoinTask

    该类中有几个重要的域:

        /**
         * Capacity of work-stealing queue array upon initialization.
         * Must be a power of two. Initial size must be at least 4, but is
         * padded to minimize cache effects.
         */
        private static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
    
        /**
         * Maximum size for queue array. Must be a power of two
         * less than or equal to 1 << (31 - width of array entry) to
         * ensure lack of index wraparound, but is capped at a lower
         * value to help users trap runaway computations.
         */
        private static final int MAXIMUM_QUEUE_CAPACITY = 1 << 24; // 16M
    
        /**
         * The work-stealing queue array. Size must be a power of two.
         * Initialized when started (as oposed to when constructed), to
         * improve memory locality.
         */
        ForkJoinTask<?>[] queue;
    
        /**
         * The pool this thread works in. Accessed directly by ForkJoinTask.
         */
        final ForkJoinPool pool;
    
        /**
         * Index (mod queue.length) of next queue slot to push to or pop
         * from. It is written only by owner thread, and accessed by other
         * threads only after reading (volatile) queueBase.  Both queueTop
         * and queueBase are allowed to wrap around on overflow, but
         * (queueTop - queueBase) still estimates size.
         */
        int queueTop;
    
        /**
         * Index (mod queue.length) of least valid queue slot, which is
         * always the next position to steal from if nonempty.
         */
        volatile int queueBase;
        /**
         * The index of most recent stealer, used as a hint to avoid
         * traversal in method helpJoinTask. This is only a hint because a
         * worker might have had multiple steals and this only holds one
         * of them (usually the most current). Declared non-volatile,
         * relying on other prevailing sync to keep reasonably current.
         */
        int stealHint;
    
    

    ForkJoinWorkerThread使用数组实现双端队列,用来盛放ForkJoinTaskqueueTop指向对头,queueBase指向队尾。本地线程插入任务、获取任务都在队头进行,其他线程“窃取”任务则在队尾进行。

    poolIndex本线程在ForkJoinPool中工作线程数组中的下标,stealHint保存了最近的窃取者(来窃取任务的工作线程)的下标(poolIndex)。注意这个值不准确,因为可能同时有很多窃取者来窃取任务,这个值只能记录其中之一。

    添加任务:

        /**
         * Pushes a task. Call only from this thread.
         *
         * @param t the task. Caller must ensure non-null.
         */
        final void pushTask(ForkJoinTask<?> t) {
            ForkJoinTask<?>[] q; int s, m;
            if ((q = queue) != null) {    // ignore if queue removed
                long u = (((s = queueTop) & (m = q.length - 1)) << ASHIFT) + ABASE;
                UNSAFE.putOrderedObject(q, u, t);
                queueTop = s + 1;         // or use putOrderedInt
                if ((s -= queueBase) <= 2)
                    pool.signalWork();
                else if (s == m)
                    growQueue();
            }
        }
    
    

    首先将任务放在queueTop指向的队列位置,再将queueTop加1。

    然后分析队列容量情况,当数组元素比较少时(1或者2),就调用signalWork()方法。signalWork()方法做了两件事:

    • 唤醒当前线程;
    • 当没有活动线程时或者线程数较少时,添加新的线程。

    else if部分表示队列已满(队头指针=队列长度减1),调用growQueue()扩容。

    join任务:

        /**
         * Possibly runs some tasks and/or blocks, until joinMe is done.
         *
         * @param joinMe the task to join
         * @return completion status on exit
         */
        final int joinTask(ForkJoinTask<?> joinMe) {
            ForkJoinTask<?> prevJoin = currentJoin;
            currentJoin = joinMe;
            for (int s, retries = MAX_HELP;;) {
                if ((s = joinMe.status) < 0) {
                    currentJoin = prevJoin;
                    return s;
                }
                if (retries > 0) {
                    if (queueTop != queueBase) {
                        if (!localHelpJoinTask(joinMe))
                            retries = 0;           // cannot help
                    }
                    else if (retries == MAX_HELP >>> 1) {
                        --retries;                 // check uncommon case
                        if (tryDeqAndExec(joinMe) >= 0)
                            Thread.yield();        // for politeness
                    }
                    else
                        retries = helpJoinTask(joinMe) ? MAX_HELP : retries - 1;
                }
                else {
                    retries = MAX_HELP;           // restart if not done
                    pool.tryAwaitJoin(joinMe);
                }
            }
        }
    
    

    join操作类似插队,确保入参joinMe执行完毕后再进行后续操作。

    这里面有个变量retries,表示可以重试的次数,最大值为MAX_HELP=16。重试的过程如下:

    • 判断joinMe是否已完成(joinMe.status < 0),如果是,则直接返回。
    • 判断retries是否用完了,如果是,则调用pool.tryAwaitJoin()阻塞当前新城,等待joinMe完成
    • retries大于0,首先判断当前线程的任务队列queue是否为空(queueTop != queueBase),如果不为空,调用localHelpJoinTask()方法,判断joinMe任务是否在自己的queue的队首位置,如果正好在,执行该任务;同时,由于queue不为空,则证明自己并不是没事干,无法帮助别的线程干活(工作窃取),retries置零
    • 如果自己的queue为空了,调用helpJoinTask()方法进行工作窃取,帮助其他线程干活,反正闲着也是闲着。
    • 帮别人干活也不是每次都能成功,如果连续8次都失败了(retries == MAX_HELP >>> 1),说明人品不行,自己还是歇会吧,调用Thread.yield()让权。不过,让权之前还会做最有一次努力,调用tryDeqAndExec(),看看自己在等的任务是否在某个线程的队尾,在的话偷过来执行掉。

    3.3 ForkJoinTask

    当我们调用ForkJoinTaskfork方法时,程序会调用ForkJoinWorkerThreadpushTask方法异步的执行这个任务,然后立即返回结果。

        /**
         * Arranges to asynchronously execute this task.  While it is not
         * necessarily enforced, it is a usage error to fork a task more
         * than once unless it has completed and been reinitialized.
         * Subsequent modifications to the state of this task or any data
         * it operates on are not necessarily consistently observable by
         * any thread other than the one executing it unless preceded by a
         * call to {@link #join} or related methods, or a call to {@link
         * #isDone} returning {@code true}.
         *
         * <p>This method may be invoked only from within {@code
         * ForkJoinPool} computations (as may be determined using method
         * {@link #inForkJoinPool}).  Attempts to invoke in other contexts
         * result in exceptions or errors, possibly including {@code
         * ClassCastException}.
         *
         * @return {@code this}, to simplify usage
         */
        public final ForkJoinTask<V> fork() {
            ((ForkJoinWorkerThread) Thread.currentThread())
                .pushTask(this);
            return this;
        }
    
    

    可见,fork()操作是通过调用ForkJoinWorkerThread.pushTask()实现的。该方法在上面已做分析,不再赘述。

    join方法的主要作用是阻塞当前线程并等待获取结果。代码如下:

        /**
         * Returns the result of the computation when it {@link #isDone is
         * done}.  This method differs from {@link #get()} in that
         * abnormal completion results in {@code RuntimeException} or
         * {@code Error}, not {@code ExecutionException}, and that
         * interrupts of the calling thread do <em>not</em> cause the
         * method to abruptly return by throwing {@code
         * InterruptedException}.
         *
         * @return the computed result
         */
        public final V join() {
            if (doJoin() != NORMAL)
                return reportResult();
            else
                return getRawResult();
        }
    
        /**
         * Report the result of invoke or join; called only upon
         * non-normal return of internal versions.
         */
        private V reportResult() {
            int s; Throwable ex;
            if ((s = status) == CANCELLED)
                throw new CancellationException();
            if (s == EXCEPTIONAL && (ex = getThrowableException()) != null)
                UNSAFE.throwException(ex);
            return getRawResult();
        }
    
    

    首先,它调用了doJoin()方法,通过doJoin()方法得到当前任务的状态来判断返回什么结果,任务状态有四种:

    private static final int NORMAL      = -1;
    private static final int CANCELLED   = -2;
    private static final int EXCEPTIONAL = -3;
    private static final int SIGNAL      =  1;
    
    • 如果任务状态是已完成,则直接返回任务结果。
    • 如果任务状态是被取消,则直接抛出CancellationException
    • 如果任务状态是抛出异常,则直接抛出对应的异常。

    再来看doJoin方法:

    private int doJoin() {
        int s; Thread t; ForkJoinWorkerThread wt; ForkJoinPool.WorkQueue w;
        return (s = status) < 0 ? s :
                ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) ?
                        (w = (wt = (ForkJoinWorkerThread)t).workQueue).
                                // 执行任务
                                tryUnpush(this) && (s = doExec()) < 0 ? s :
                                wt.pool.awaitJoin(w, this, 0L) :
                        // 阻塞非工作线程,直到工作线程执行完毕
                        externalAwaitDone();
    }
    
    final int doExec() {
        int s; boolean completed;
        if ((s = status) >= 0) {
            try {
                completed = exec();
            } catch (Throwable rex) {
                return setExceptionalCompletion(rex);
            }
            if (completed)
                s = setCompletion(NORMAL);
        }
        return s;
    }
    

    doJoin()方法里,首先通过查看任务的状态,看任务是否已经执行完成,如果执行完成, 则直接返回任务状态;如果没有执行完,则从任务数组里取出任务并执行。如果任务顺利执行完成,则设置任务状态为NORMAL,如果出现异常,则记录异常,并将任务状态设置为EXCEPTIONAL

    相关文章

      网友评论

          本文标题:JAVA基础之Fork/Join框架

          本文链接:https://www.haomeiwen.com/subject/ekbngctx.html