美文网首页
训练 pytorch 代码进行mnist分类

训练 pytorch 代码进行mnist分类

作者: 阮恒 | 来源:发表于2019-10-06 04:47 被阅读0次
    from __future__ import print_function
    import argparse
    import torch
    import torch.nn as nn
    import torch.nn.functional as F
    import torch.optim as optim
    from torchvision import datasets, transforms
    
    class pytorch_Net(nn.Module):
        def __init__(self):
            super(pytorch_Net, self).__init__()
            self.num_channels = 1
            self.image_size = 28
            self.num_labels = 10
            self.conv2d_1 = nn.Conv2d(1, 32, 3, 1)
            self.conv2d_2 = nn.Conv2d(32, 32, 3, 1)
            self.conv2d_3 = nn.Conv2d(32, 64, 3, 1)
            self.conv2d_4 = nn.Conv2d(64, 64, 3, 1)
    
            self.dense_1 = nn.Linear(4 * 4 * 64, 200)
            self.dense_2 = nn.Linear(200, 200)
            self.dense_3 = nn.Linear(200, 10)
    
    
        def forward(self, x):
            x = F.relu(self.conv2d_1(x))
            x = F.relu(self.conv2d_2(x))
            x = F.max_pool2d(x, 2, 2)
            x = F.relu(self.conv2d_3(x))
            x = F.relu(self.conv2d_4(x))
            x = F.max_pool2d(x, 2, 2)
            x = x.permute((0, 2, 3, 1))
    
            x = x.contiguous().view(-1, 4 * 4 * 64)
            x = x.view(-1, 4 * 4 * 64)
            x = F.relu(self.dense_1(x))
            x = F.relu(self.dense_2(x))
            x = self.dense_3(x)
            return F.log_softmax(x, dim=1)
    
    
    class pytorch_keras_Net(nn.Module):
        def __init__(self):
            super(pytorch_keras_Net, self).__init__()
            self.num_channels = 1
            self.image_size = 28
            self.num_labels = 10
            self.conv2d_1 = nn.Conv2d(1, 32, 3, 1)
            self.conv2d_2 = nn.Conv2d(32, 32, 3, 1)
            self.conv2d_3 = nn.Conv2d(32, 64, 3, 1)
            self.conv2d_4 = nn.Conv2d(64, 64, 3, 1)
    
            self.dense_1 = nn.Linear(4 * 4 * 64, 200)
            self.dense_2 = nn.Linear(200, 200)
            self.dense_3 = nn.Linear(200, 10)
    
    
        def forward(self, x):
            x = F.relu(self.conv2d_1(x))
            x = F.relu(self.conv2d_2(x))
            x = F.max_pool2d(x, 2, 2)
            x = F.relu(self.conv2d_3(x))
            x = F.relu(self.conv2d_4(x))
            x = F.max_pool2d(x, 2, 2)
            x = x.permute((0, 2, 3, 1))
    
            x = x.contiguous().view(-1, 4 * 4 * 64)
            x = x.view(-1, 4 * 4 * 64)
            x = F.relu(self.dense_1(x))
            x = F.relu(self.dense_2(x))
            x = self.dense_3(x)
            return F.log_softmax(x, dim=1)
    
    
    
    def train(args, model, device, train_loader, optimizer, epoch):
        model.train()
        for batch_idx, (data, target) in enumerate(train_loader):
            data, target = data.to(device), target.to(device)
            optimizer.zero_grad()
            output = model(data)
            loss = F.nll_loss(output, target)
            loss.backward()
            optimizer.step()
            if batch_idx % args.log_interval == 0:
                print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                    epoch, batch_idx * len(data), len(train_loader.dataset),
                           100. * batch_idx / len(train_loader), loss.item()))
    
    
    def test(args, model, device, test_loader):
        model.eval()
        test_loss = 0
        correct = 0
        with torch.no_grad():
            for data, target in test_loader:
                data, target = data.to(device), target.to(device)
                # print("______data.shape:", data.shape)
                output = model(data)
                test_loss += F.nll_loss(output, target, reduction='sum').item()  # sum up batch loss
                pred = output.argmax(dim=1, keepdim=True)  # get the index of the max log-probability
                correct += pred.eq(target.view_as(pred)).sum().item()
    
        test_loss /= len(test_loader.dataset)
    
        print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
            test_loss, correct, len(test_loader.dataset),
            100. * correct / len(test_loader.dataset)))
    
    
    def main():
        # Training settings
        parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
        parser.add_argument('--load_keras', type=bool, default=False,
                            help='if the model is load from keras')
    
        parser.add_argument('--batch-size', type=int, default=64, metavar='N',
                            help='input batch size for training (default: 64)')
        parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
                            help='input batch size for testing (default: 1000)')
        parser.add_argument('--epochs', type=int, default=10, metavar='N',
                            help='number of epochs to train (default: 10)')
        parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
                            help='learning rate (default: 0.01)')
        parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
                            help='SGD momentum (default: 0.5)')
        parser.add_argument('--no-cuda', action='store_true', default=False,
                            help='disables CUDA training')
        parser.add_argument('--seed', type=int, default=1, metavar='S',
                            help='random seed (default: 1)')
        parser.add_argument('--log-interval', type=int, default=10, metavar='N',
                            help='how many batches to wait before logging training status')
    
        parser.add_argument('--save-model', action='store_true', default=True,
                            help='For Saving the current Model')
        args = parser.parse_args()
        use_cuda = not args.no_cuda and torch.cuda.is_available()
    
        torch.manual_seed(args.seed)
    
        device = torch.device("cuda" if use_cuda else "cpu")
    
        kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
        train_loader = torch.utils.data.DataLoader(
            datasets.MNIST('../data', train=True, download=True,
                           transform=transforms.Compose([
                               transforms.ToTensor(),
                               transforms.Normalize((0.1307,), (0.3081,))
                           ])),
            batch_size=args.batch_size, shuffle=True, **kwargs)
        test_loader = torch.utils.data.DataLoader(
            datasets.MNIST('../data', train=False, transform=transforms.Compose([
                transforms.ToTensor(),
                transforms.Normalize((0.1307,), (0.3081,))
            ])),
            batch_size=args.test_batch_size, shuffle=True, **kwargs)
        if args.load_keras:
            model = pytorch_keras_Net.to(device)
            model.load_state_dict(torch.load("pyt_model.pt"))
        else:
            model = pytorch_Net().to(device)
        # model.load_state_dict(torch.load("mnist_cnn.pt"))
        for name, param in model.named_parameters():
            print("name:", name)
            print("param:", param.shape)
    
    
        optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
    
        for epoch in range(1, args.epochs + 1):
            train(args, model, device, train_loader, optimizer, epoch)
            test(args, model, device, test_loader)
    
        if (args.save_model):
            torch.save(model.state_dict(), "mnist_cnn.pt")
    
    
    if __name__ == '__main__':
        main()
    

    相关文章

      网友评论

          本文标题:训练 pytorch 代码进行mnist分类

          本文链接:https://www.haomeiwen.com/subject/fmzypctx.html