美文网首页
ubuntu编译tensorflow2.1-gpu

ubuntu编译tensorflow2.1-gpu

作者: 一叶舟遥 | 来源:发表于2020-12-15 14:34 被阅读0次

    Setup

    环境:Ubuntu 18.04.3 LTS, CUDA 10.2, cuDNN 7.5, Python 3.6.9, Bazel 0.29.1

    # 创建虚拟环境
    $ python3 -m build-tf
    $ source build-tf/bin/activate
    
    # 安装一些依赖包(这里有些坑)
    (build-tf) $ pip install -U pip numpy wheel
    (build-tf) $ pip install -U keras_preprocessing --no-deps
    

    Install Bazel

    # 使用[bazelisk](https://github.com/bazelbuild/bazelisk)
    (build-tf) $ wget -O /usr/local/bin/bazel https://github.com/bazelbuild/bazelisk/releases/latest/download/bazelisk-linux-amd64
    (build-tf) $ chmod +x /usr/local/bin/bazel
    (build-tf) $ export USE_BAZEL_VERSION=0.29.1
    (build-tf) $ export TMP=/tmp
    
    

    Configure the build

    # 用国内的gitee镜像仓库,github基本没可能能拉下来
    (build-tf) $ git clone https://gitee.com/mirrors/tensorflow.git
    (build-tf) $ cd tensorflow
    # 切换到tag v2.1.0
    (build-tf) $ git checkout v2.1.0
    (build-tf) $ python configure.py
    # CUDA support选Y,其他回车跳过
    Please specify the location of python. [Default is /usr/bin/python3]: 
    
    
    Found possible Python library paths:
      /usr/lib/python3/dist-packages
      /usr/local/lib/python3.6/dist-packages
    Please input the desired Python library path to use.  Default is [/usr/lib/python3/dist-packages]
    
    Do you wish to build TensorFlow with OpenCL SYCL support? [y/N]: 
    No OpenCL SYCL support will be enabled for TensorFlow.
    
    Do you wish to build TensorFlow with ROCm support? [y/N]: 
    No ROCm support will be enabled for TensorFlow.
    
    Do you wish to build TensorFlow with CUDA support? [y/N]: Y
    CUDA support will be enabled for TensorFlow.
    
    Do you wish to build TensorFlow with TensorRT support? [y/N]: 
    No TensorRT support will be enabled for TensorFlow.
    
    Found CUDA 10.1 in:
        /usr/local/cuda-10.1/targets/x86_64-linux/lib
        /usr/local/cuda-10.1/targets/x86_64-linux/include
    Found cuDNN 7 in:
        /usr/lib/x86_64-linux-gnu
        /usr/include
    
    
    Please specify a list of comma-separated CUDA compute capabilities you want to build with.
    You can find the compute capability of your device at: https://developer.nvidia.com/cuda-gpus Each capability can be specified as "x.y" or "compute_xy" to include both virtual and binary GPU code, or as "sm_xy" to only include the binary code.
    Please note that each additional compute capability significantly increases your build time and binary size, and that TensorFlow only supports compute capabilities >= 3.5 [Default is: 3.5,7.0]: 6.1
    
    
    Do you want to use clang as CUDA compiler? [y/N]: 
    nvcc will be used as CUDA compiler.
    
    Please specify which gcc should be used by nvcc as the host compiler. [Default is /usr/bin/gcc]: 
    
    
    Please specify optimization flags to use during compilation when bazel option "--config=opt" is specified [Default is -march=native -Wno-sign-compare]: 
    
    
    Would you like to interactively configure ./WORKSPACE for Android builds? [y/N]: 
    Not configuring the WORKSPACE for Android builds.
    
    Preconfigured Bazel build configs. You can use any of the below by adding "--config=<>" to your build command. See .bazelrc for more details.
        --config=mkl            # Build with MKL support.
        --config=monolithic     # Config for mostly static monolithic build.
        --config=ngraph         # Build with Intel nGraph support.
        --config=numa           # Build with NUMA support.
        --config=dynamic_kernels    # (Experimental) Build kernels into separate shared objects.
        --config=v2             # Build TensorFlow 2.x instead of 1.x.
    Preconfigured Bazel build configs to DISABLE default on features:
        --config=noaws          # Disable AWS S3 filesystem support.
        --config=nogcp          # Disable GCP support.
        --config=nohdfs         # Disable HDFS support.
        --config=nonccl         # Disable NVIDIA NCCL support.
    Configuration finished
    
    

    Build the pip package

    ### 开始编译
    (build-tf) $ bazel build --config=opt --config=cuda //tensorflow/tools/pip_package:build_pip_package
    

    Build and Install the package

    (build-tf) $ ./bazel-bin/tensorflow/tools/pip_package/build_pip_package /tmp/tensorflow_pkg
    (build-tf) $ /tmp/tensorflow_pkg/tensorflow-2.1.0-cp36-cp36m-linux_x86_64.whl
    

    一些巨坑

    • 科学上网和git代理,编译过程中一直在git fetch,没有外网环境几乎寸步难行
    • 有些包就是拉不下来,比如mkl和llvm。拿到url之后用电脑或者手机想尽办法下载下来,然后搭个文件服务器放上去,然后把tensorflow/tensorflow/workspace.bzl中对应repository的urls加上自己文件服务器的链接,比如:
        mkl_repository(
            name = "mkl_linux",
            build_file = clean_dep("//third_party/mkl:mkl.BUILD"),
            sha256 = "a936d6b277a33d2a027a024ea8e65df62bd2e162c7ca52c48486ed9d5dc27160",
            strip_prefix = "mklml_lnx_2019.0.5.20190502",
            urls = [
                "http://47.96.129.56/mklml_lnx_2019.0.5.20190502.tgz",
                "https://storage.googleapis.com/mirror.tensorflow.org/github.com/intel/mkl-dnn/releases/download/v0.21/mklml_lnx_2019.0.5.20190502.tgz",
                "https://github.com/intel/mkl-dnn/releases/download/v0.21/mklml_lnx_2019.0.5.20190502.tgz",
            ],
        )
    
    • C++ compilation of rule '//tensorflow/python:bfloat16_lib' failed (Exit 1)错误,参考issue#41061,可能是一些依赖包的问题。
    (build-tf) $ pip install 'numpy<1.19.0'
    (build-tf) $ pip install -U pip six wheel mock
    (build-tf) $ pip install future
    (build-tf) $ pip install keras_applications==1.0.8 --no-deps
    (build-tf) $ pip install keras_preprocessing==1.1.2 --no-deps
    (build-tf) $ pip install pandas
    

    编译成功界面

    tf编译成功纪念.png

    相关文章

      网友评论

          本文标题:ubuntu编译tensorflow2.1-gpu

          本文链接:https://www.haomeiwen.com/subject/fxrwgktx.html