美文网首页
无标题文章

无标题文章

作者: 大乔治 | 来源:发表于2016-11-21 01:23 被阅读0次

    """

    Created on Wed Nov 16 21:04:04 2016

    @author: TanMingjun

    """

    import matplotlib.pyplot as plt

    import numpy as np

    class billiard_circle():

    def init(self,x_0,y_0,vx_0,vy_0,N,dt):

    self.x_0 = x_0

    self.y_0 = y_0

    self.vx_0 = vx_0

    self.vy_0 = vy_0

    self.N = N

    self.dt = dt

    def motion_calculate(self):

    self.x = []

    self.y = []

    self.vx = []

    self.vy = []

    self.t = [0]

    self.x.append(self.x_0)

    self.y.append(self.y_0)

    self.vx.append(self.vx_0)

    self.vy.append(self.vy_0)

    for i in range(1,self.N):

    self.x.append(self.x[i - 1] + self.vx[i - 1]*self.dt)

    self.y.append(self.y[i - 1] + self.vy[i - 1]*self.dt)

    self.vx.append(self.vx[i - 1])

    self.vy.append(self.vy[i - 1])

    if (np.sqrt( self.x[i]2+(self.y[i]-0.01)2 ) > 1.0) and self.y[i]>0.01:

    self.x[i],self.y[i] = self.correct('np.sqrt(x2+(y-0.01)2) < 1.0',self.x[i - 1], self.y[i - 1], self.vx[i - 1], self.vy[i - 1])

    self.vx[i],self.vy[i] = self.reflect1(self.x[i],self.y[i],self.vx[i - 1], self.vy[i - 1])

    elif (np.sqrt( self.x[i]2+(self.y[i]+0.01)2 ) > 1.0) and self.y[i]<-0.01:

    self.x[i],self.y[i] = self.correct('np.sqrt(x2+(y+0.01)2) < 1.0',self.x[i - 1], self.y[i - 1], self.vx[i - 1], self.vy[i - 1])

    self.vx[i],self.vy[i] = self.reflect2(self.x[i],self.y[i],self.vx[i - 1], self.vy[i - 1])

    elif (self.x[i] < -1.0) and self.y[i]>-0.01 and self.y[i]<0.01:

    self.x[i],self.y[i] = self.correct('x>-1.0',self.x[i - 1], self.y[i - 1], self.vx[i - 1], self.vy[i - 1])

    self.vx[i] = - self.vx[i]

    elif (self.x[i] > 1.0) and self.y[i]>-0.01 and self.y[i]<0.01:

    self.x[i],self.y[i] = self.correct('x<1.0',self.x[i - 1], self.y[i - 1], self.vx[i - 1], self.vy[i - 1])

    self.vx[i] = - self.vx[i]

    self.t.append(self.t[i - 1] + self.dt)

    return self.x, self.y, self.t

    def correct(self,condition,x,y,vx,vy):

    vx_c = vx/100.0

    vy_c = vy/100.0

    while eval(condition):

    x = x + vx_c*self.dt

    y = y + vy_c*self.dt

    return x-vx_cself.dt,y-vy_cself.dt

    def reflect1(self,x,y,vx,vy):

    module = np.sqrt(x2+(y-0.01)2) ### normalization

    x = x/module

    y = (y-0.01)/module+0.01

    v = np.sqrt(vx2+vy2)

    cos1 = (vxx+vy(y-0.01))/v

    cos2 = (vx(y-0.01)-vyx)/v

    vt = -v*cos1

    vc = v*cos2

    vx_n = vtx+vc(y-0.01)

    vy_n = vt(y-0.01)-vcx

    return vx_n,vy_n

    def reflect2(self,x,y,vx,vy):

    module = np.sqrt(x2+(y+0.01)2) ### normalization

    x = x/module

    y = (y+0.01)/module-0.01

    v = np.sqrt(vx2+vy2)

    cos1 = (vxx+vy(y+0.01))/v

    cos2 = (vx(y+0.01)-vyx)/v

    vt = -v*cos1

    vc = v*cos2

    vx_n = vtx+vc(y+0.01)

    vy_n = vt(y+0.01)-vcx

    return vx_n,vy_n

    def plot(self):

    plt.figure(figsize = (8,8))

    plt.xlim(-1,1)

    plt.ylim(-1,1)

    plt.xlabel('x')

    plt.ylabel('y')

    plt.title('Stadium billiard $\alpha$=0.01')

    self.plot_boundary()

    plt.plot(self.x,self.y,'y')

    #plt.savefig('chapter3_3.31.png',dpi = 144)

    plt.show()

    def plot_boundary(self):

    theta = 0

    x = []

    y = []

    while theta < np.pi:

    x.append(np.cos(theta))

    y.append(np.sin(theta)+0.01)

    theta+= 0.01

    plt.plot(x,y,'g.')

    while theta > np.pi and theta< 2*np.pi:

    x.append(np.cos(theta))

    y.append(np.sin(theta)-0.01)

    theta+= 0.01

    plt.plot(x,y,'g.')

    A1=billiard_circle(0,0,1,0.6,4000,0.01)

    x1,y1,t1=A1.motion_calculate()

    A2=billiard_circle(0.00001,0,1,0.6,4000,0.01)

    x2,y2,t2=A2.motion_calculate()

    delta=[]

    for i in range(len(x1)):

    x1[i]=np.sqrt((x1[i]-x2[i])2+(y1[i]-y2[i])2)

    plt.semilogy(t1,x1)

    plt.title('Stadium with $\alpha$=0.01 - divergence of two trajectories')

    plt.xlabel('time')

    plt.ylabel('separation')

    相关文章

      网友评论

          本文标题:无标题文章

          本文链接:https://www.haomeiwen.com/subject/hsaypttx.html