美文网首页
基于tensorflow框架搭建神经网络模型

基于tensorflow框架搭建神经网络模型

作者: 星girl | 来源:发表于2019-01-15 15:02 被阅读0次

    -- coding: utf-8 --

    """
    Created on Sat Oct 13 22:42:35 2018

    使用tensorflow框架完成一个神经网络模型
    @author: ltx
    """
    import tensorflow as tf
    from tensorflow.python.framework import ops
    import numpy as np
    import matplotlib.pyplot as plt
    import tf_utils

    创建热键函数

    def create_placeholders(n_x,n_y):
    X=tf.placeholder(tf.float32,[n_x,None],name="X")
    Y=tf.placeholder(tf.float32,[n_y,None],name="Y")
    return X,Y

    ---------读取数据集------------

    train_x,train_y,test_x,test_y,classes=tf_utils.load_dataset()

    m=np.shape(train_x)[0]
    print("m,n="+str(np.shape(train_y)))
    plt.imshow(train_x[11])
    print("m,n="+str(np.shape(train_x[11])))
    print("Y="+str(train_y[0,11]))

    print("Y="+str(np.squeeze(train_y[0,11])))

    -----------扁平化图像数据---------------------

    X_train_flatten=train_x.reshape(train_x.shape[0],-1).T
    X_test_flatten=test_x.reshape(test_x.shape[0],-1).T

    归一化数据

    X_train=X_train_flatten/255
    X_test=X_test_flatten/255
    Y_train=tf_utils.convert_to_one_hot(train_y,6)
    Y_test=tf_utils.convert_to_one_hot(test_y,6)

    初始化模型参数xavier

    def initialparameters():
    tf.set_random_seed(1)
    W1=tf.get_variable("W1",[25,12288],initializer=tf.contrib.layers.xavier_initializer(seed=1))
    b1=tf.get_variable("b1",[25,1],initializer=tf.zeros_initializer)
    W2=tf.get_variable("W2",[12,25],initializer=tf.contrib.layers.xavier_initializer(seed=1))
    b2=tf.get_variable("b2",[12,1],initializer=tf.zeros_initializer)
    W3=tf.get_variable("W3",[6,12],initializer=tf.contrib.layers.xavier_initializer(seed=1))
    b3=tf.get_variable("b3",[6,1],initializer=tf.zeros_initializer)
    parameters={"W1":W1,
    "b1":b1,
    "W2":W2,
    "b2":b2,
    "W3":W3,
    "b3":b3
    }
    return parameters

    -------向前传播---------------

    def forward(X,parameters):
    W1=parameters["W1"]
    b1=parameters["b1"]
    W2=parameters["W2"]
    b2=parameters["b2"]
    W3=parameters["W3"]
    b3=parameters["b3"]
    print("W1="+str(np.shape(W1)))
    print("X="+str(np.shape(X)))
    print("b1="+str(np.shape(b1)))
    Z1=tf.matmul(W1,X)+b1
    A1=tf.nn.relu(Z1)
    Z2=tf.matmul(W2,A1)+b2
    A2=tf.nn.relu(Z2)
    Z3=tf.matmul(W3,A2)+b3
    return Z3

    ----------计算成本--------------

    def compute_cost(Z3,Y):
    cost=tf.nn.softmax_cross_entropy_with_logits(logits=tf.transpose(Z3),labels=tf.transpose(Y))
    cost=tf.reduce_mean(cost)
    return cost

    ----------------向后传播-----------------------

    def back(cost,learning_rate):
    optimizer=tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
    return optimizer

    --------------构建自己的模型-----------------

    def model(X_train,Y_train,epoches=1500,learning_rate=0.0001,batch_size=32,is_plot=True):
    ops.reset_default_graph()
    costs=[]
    seed=3
    #定义X,Y热键,可以先不用赋值。
    n_x=X_train.shape[0]
    n_y=Y_train.shape[0]
    X,Y=create_placeholders(n_x,n_y)
    #初始化模型参数
    parameters=initialparameters()
    #向前传播
    Z3=forward(X,parameters)
    #计算cost
    cost=compute_cost(Z3,Y)
    #向后传播,优化参数
    optimizer=back(cost,learning_rate)
    #初始化所有参数
    inits=tf.global_variables_initializer()
    #使用minibatch循环更新parameters
    with tf.Session() as sess:
    #首先初始化所有变量
    sess.run(inits)
    for epoch in range(epoches):
    seed=seed+1
    epcost=0
    batchNum=int(m/batch_size)
    batches=tf_utils.random_mini_batches(X_train,Y_train,batch_size,seed)
    for batch in batches:
    (batch_x,batch_y)=batch
    _,minibatch_cost=sess.run([optimizer,cost],feed_dict={X:batch_x,Y:batch_y})
    epcost=epcost+minibatch_cost
    # sess.run(optimizer,feed_dict={X:batch_x, Y:batch_y})
    # epcost=epcost+sess.run(cost,feed_dict={X:batch_x, Y:batch_y})

            epcost=epcost/batchNum
            if(epoch%5==0):
                costs.append(epcost)
            if(epoch % 100==0):
                print("epcost="+str(epcost))
        #是否绘制图谱
        if is_plot:
            plt.plot(np.squeeze(costs))
            plt.ylabel('cost')
            plt.xlabel('iterations (per tens)')
            plt.title("Learning rate =" + str(learning_rate))
            plt.show()
        #计算模型的准确度
        accurate=tf.reduce_mean(sess.run(Z3)-Y_train)
        print("accurate"+str(accurate))
    return parameters
    

    model(X_train=X_train,Y_train=Y_train)
    -----------------------实验结果------------------------------

    tf.png

    相关文章

      网友评论

          本文标题:基于tensorflow框架搭建神经网络模型

          本文链接:https://www.haomeiwen.com/subject/iblydqtx.html