美文网首页
预测一下明年的国家线

预测一下明年的国家线

作者: ks_c | 来源:发表于2022-03-11 18:34 被阅读0次

    用R建立一个回归模型看一看明年学硕、教育学的国家线

    建立数据框

    gjx <- data.frame(
      year = c(2017,2018,2019,2020,2021,2022),
      grade = c(310,320,325,331,337,351)
    )
    gjx
    

    拟合模型

    fit1 <- lm(grade~year,data = gjx)
    anova(fit1)
    summary(fit1)
    

    F=133.55, p=0.0003203, adjusted R-square=0.97
    it seems our model works just fine

    confint(fit1)
    

    *the table below seems to be the 95% interval of the coefficient *

    2.5 % 97.5 %
    (Intercept) -18420.406517 -11156.393483
    year 5.687247 9.284182

    回归诊断

    高斯-马尔科夫假设的诊断

    par(mfrow=c(2,2))
    plot(fit1)
    
    i don't really know this G-M hypothesis shit

    其他乱七八糟的诊断

    just here for fun, stop doing such boring、 fun-killing、awkward、annoying、painful especially math-ish things plz
                                      -----wise man

    回归方程可视化

    library(ggplot2)
    
    ggplot(gjx, 
           aes(x=year, y=grade,
               color="#5e616d"))+
      geom_point()+                                               #绘画散点图                        
      stat_smooth(method = lm,color="black")+                     #在散点图加回归拟合线 
      annotate( "text", 
               label = "R^2=0.97",
               parse=T,x=2019,y=300)+    #在图上添加R方
      annotate("text", 
               label = "y=-14790 + 7.486x",
               x=2019,y=305)            #在图上添加方程
    
    
    ggplot2 is amazing

    reference:铭记yu心, R语言|回归分析(一) ———R语言数据分析系列(一), CSDN

    2017~2022年的预测值

    predict(fit1,
            data.frame(year=2017:2022),
            interval = 'prediction',
            level = 0.95)
    
    new <- data.frame(year=c(2023)) 
    ### 用于预测的数据名必须与回归中自变量名称相同
    

    well... what could i say since the model nearly precisely predicted the grades of the limit

    2023年预测值

    predict(fit1,new,interval = 'prediction',level = 0.95)
    
    fit lwr upr
    2023 355.2 344.9209 365.4791

    *it seems that the limit of first try of PEE would be at least 344, which is not going to happen. and the top of the limit would be, well, 365, then 365 it is *

    画个图吧

    x <- c(gjx$year,2023)
    y <- c(gjx$grade,365)
    plot(gjx$year,gjx$grade,
         cex=1,                  #  图形大小
          pch=18,                 # 点类型
         xlim=c(2017,2023),  # x轴范围
         ylim=c(310,370)      # y轴范围
          xlab='年份'         # x、y的坐标名称, lz太懒了没有加上
          ylab='分数')   
    
    lines(x,y,lwd=1.5,col='gray') #画折线
    
    points(2023,365,cex=2,pch=17,col='red') #添加2023年的新点
    
    pic

    looks like a exp regression is more suitable? someome who know how to realise it contact me

    相关文章

      网友评论

          本文标题:预测一下明年的国家线

          本文链接:https://www.haomeiwen.com/subject/iqhhdrtx.html