美文网首页
2019-05-03

2019-05-03

作者: Jack________ | 来源:发表于2019-06-14 23:32 被阅读0次

    转贴: 谈一谈两种常用的多重比较校正方法(附Matlab程序)

    原创: 脑之说小编kervin 脑之说 今天

    作者:kervin

    微信号:kervin_zhao

    在科学研究的统计分析中,我们往往会遇到多重比较校正问题。多重比较校正的方法很多,如Bonferroni、False Discovery Rate(FDR)、Random-field Theory (RFT)等等,各种校正方法各有优劣,具体应用时要根据自己的统计分析的数据特点进行选择。本文,笔者对Bonferroni和False Discovery Rate(FDR)两种校正方法进行论述,特别是对于应用比较广的FDR校正方法,笔者用具体的例子详细阐述了其原理,并给出其Matlab程序

    为什么要进行多重比较校正

    当在同一个数据集上进行多次统计检验时,就需要进行多重比较校正。举个简单的例子,A、B两组被试,我们从每个被试身上得出10个指标。如果我们要研究A、B两组被试的某一个指标是否存在显著差异,那么此时我们只做一次统计分析就行;假设这个指标的p值小于0.05,我们会认为这个指标在A、B两组之间存在显著差异,此时,我们犯错的概率(或者称为假阳性率)是5%。假设我们把这10个指标都进行了统计分析,即使每个独立的指标的p值都小于0.05,此时我们犯错的概率不再是5%,而是1-(0.95)^10=0.4013,也就是说此时我们犯错的概率达到40%多,这在统计学上是不可接受的。因此,需要进行多重比较校正。

    Bonferroni 校正方法

    Bonferroni校正方法非常简单,若单次显著性水平为0.05,那么Bonferroni 校正后的p值应该为0.05/n,其中n为统计比较的次数。Bonferroni 校正方法应该属于最严格的一种校正方法,当统计比较的次数比较多时,Bonferroni 校正后的p值会非常小,此时不推荐使用这种校正方法。当统计比较的次数较小时,如小于几十个时,可以尝试使用。

    FDR 校正方法

    这里,笔者主要对FDR校正方法的原理进行论述。FDR校正方法是Benjamini和Hochberg于1995年提出了一种多重比较校正的方法。其实,FDR具体的算法也有多种,如Storey法(由Storey等人提出)、Benjamini-Hochberg法(简称BH法)等。其中BH法目前应用最广,这里主要介绍这种方法的基本原理。

    基于BH法的FDR校正过程

    第一步:将我们单独统计得到的一系列的p=[p1,p2,…,pn]从大到小进行重新排序,计为P=[P1,P2,…,Pn];

    第二步:按照以下公式计算每个P值所对应的校正前的FDR值,这里称之为Q值:Q = Pi* (n/r),Pi表示P中元素值,n是P值个数,r依次为n,n-1,…,1。

    第三步:对Q进行校正,得到FDR值。对于计算出来的Q=[Q1,Q2,…,Qn],若某一个Qi值大于前一位Qi-1值,则把Qi的值赋值为Qi-1;反之则保留相应的Q值。最终得到Q值称之为校正后的FDR值。

    第四步:按照重排序之前的顺序返回各个p值对应的校正后的FDR值。

    例子:假设p=[0.01, 0.005, 0.03, 0.03, 0.02, 0.04, 0.05],计算相应的校正后的FDR值。

    笔者按照上述步骤,自行编制相应的Matlab程序,计算过程和结果如下:

    按照上述第一步步骤,计算得到P=[0.0500, 0.0400, 0.0300, 0.0300, 0.0200, 0.0100, 0.0050];

    按照第二步中的方法,计算得到Q=[0.0500, 0.0467, 0.0420, 0.0525, 0.0467, 0.0350, 0.0350];

    按照第三步:得到校正后的FDR值为:FDR=[ 0.0500, 0.0467, 0.0420, 0.0420, 0.0420, 0.0350, 0.0350];

    最后,转换成原来的顺序:FDR=[0.0350, 0.0350, 0.0420, 0.0420, 0.0420, 0.0467, 0.0500].

    对于本例来说,如果总体的显著性水平设置为0.05,那么从得到的最后的FDR值来说,这几个p值都具有显著性差异。

    相关文章

      网友评论

          本文标题:2019-05-03

          本文链接:https://www.haomeiwen.com/subject/irjznqtx.html