美文网首页我爱编程
吴恩达deep_learning_week4.2_Deep_Ne

吴恩达deep_learning_week4.2_Deep_Ne

作者: PerfectDemoT | 来源:发表于2018-03-30 14:17 被阅读0次

    吴恩达deep_learning_week4.2_Deep_Neural_Network

    标签: 机器学习深度学习


    1.1

    首先先导入包,(注意这和上一篇有一点不一样,多了一个包)

    import time
    import numpy as np
    import h5py
    import matplotlib.pyplot as plt
    import scipy
    import pylab #这个包是为了后面显示图片用的
    from PIL import Image
    from scipy import ndimage
    from dnn_app_utils import * #这里导入的就是前一篇写好的各个函数。
    

    然后老样子,和上一篇一样,先设置一下绘图尺寸,颜色啥的。。。

    #%matplotlib inline
    plt.rcParams['figure.figsize'] = (5.0, 4.0) # set default size of plots
    plt.rcParams['image.interpolation'] = 'nearest'
    plt.rcParams['image.cmap'] = 'gray'
    
    #%load_ext autoreload
    #%autoreload 2 ​
    np.random.seed(1)
    

    然后开始导入数据,向量化,归一化,输出看看(之前的几篇文章都有详细一步步介绍,此不赘述,直接贴出代码)

    #导入数据
    train_x_orig, train_y, test_x_orig, test_y, classes = load_data()
    
    # Example of a picture显示一下
    index = 10
    plt.imshow(train_x_orig[index])
    pylab.show()
    print ("y = " + str(train_y[0,index]) + ". It's a " + classes[train_y[0,index]].decode("utf-8") +  " picture.")
    
    
    
    # Explore your dataset
    m_train = train_x_orig.shape[0]
    num_px = train_x_orig.shape[1]
    m_test = test_x_orig.shape[0]
    
    print ("Number of training examples: " + str(m_train))
    print ("Number of testing examples: " + str(m_test))
    print ("Each image is of size: (" + str(num_px) + ", " + str(num_px) + ", 3)")
    print ("train_x_orig shape: " + str(train_x_orig.shape))
    print ("train_y shape: " + str(train_y.shape))
    print ("test_x_orig shape: " + str(test_x_orig.shape))
    print ("test_y shape: " + str(test_y.shape))
    print("================================")
    
    #Reshape the training and test examples 向量化一下
    train_x_flatten = train_x_orig.reshape(train_x_orig.shape[0], -1).T   # The "-1" makes reshape flatten the remaining dimensions
    test_x_flatten = test_x_orig.reshape(test_x_orig.shape[0], -1).T
    
    # Standardize data to have feature values between 0 and 1.
    train_x = train_x_flatten/255.
    test_x = test_x_flatten/255.
    
    print ("train_x's shape: " + str(train_x.shape))
    print ("test_x's shape: " + str(test_x.shape))
    print("====================================")
    
    

    1.2 慢慢一步步来,并且对照效果,我们这里先试一试两层神经的网络的分类器模型(前面的文章对此已经介绍过,此不详细说明啦)

    #来看看这个两层的模型
    # GRADED FUNCTION: two_layer_model
    def two_layer_model(X, Y, layers_dims, learning_rate=0.0075, num_iterations=3000, print_cost=False):
        """
        Implements a two-layer neural network: LINEAR->RELU->LINEAR->SIGMOID.
    
        Arguments:
        X -- input data, of shape (n_x, number of examples)
        Y -- true "label" vector (containing 0 if cat, 1 if non-cat), of shape (1, number of examples)
        layers_dims -- dimensions of the layers (n_x, n_h, n_y)
        num_iterations -- number of iterations of the optimization loop
        learning_rate -- learning rate of the gradient descent update rule
        print_cost -- If set to True, this will print the cost every 100 iterations
    
        Returns:
        parameters -- a dictionary containing W1, W2, b1, and b2
        """
    
        np.random.seed(1)
        grads = {}
        costs = []  # to keep track of the cost
        m = X.shape[1]  # number of examples
        (n_x, n_h, n_y) = layers_dims
    
        # Initialize parameters dictionary, by calling one of the functions you'd previously implemented
        ### START CODE HERE ### (≈ 1 line of code)
        parameters = initialize_parameters(n_x, n_h, n_y)
        ### END CODE HERE ###
    
        # Get W1, b1, W2 and b2 from the dictionary parameters.
        W1 = parameters["W1"]
        b1 = parameters["b1"]
        W2 = parameters["W2"]
        b2 = parameters["b2"]
    
        # Loop (gradient descent)
    
        for i in range(0, num_iterations):
            # Forward propagation: LINEAR -> RELU -> LINEAR -> SIGMOID. Inputs: "X, W1, b1". Output: "A1, cache1, A2, cache2".
            ### START CODE HERE ### (≈ 2 lines of code)
            A1, cache1 = linear_activation_forward(X, W1, b1, activation = 'relu')
            A2, cache2 = linear_activation_forward(A1, W2, b2, activation = 'sigmoid')
            ### END CODE HERE ###
    
            # Compute cost
            ### START CODE HERE ### (≈ 1 line of code)
            cost = compute_cost(A2, Y)
            ### END CODE HERE ###
    
            # Initializing backward propagation
            dA2 = - (np.divide(Y, A2) - np.divide(1 - Y, 1 - A2))
    
            # Backward propagation. Inputs: "dA2, cache2, cache1". Outputs: "dA1, dW2, db2; also dA0 (not used), dW1, db1".
            ### START CODE HERE ### (≈ 2 lines of code)
            dA1, dW2, db2 = linear_activation_backward(dA2, cache2, activation = 'sigmoid')
            dA0, dW1, db1 = linear_activation_backward(dA1, cache1, activation = 'relu')
            ### END CODE HERE ###
    
            # Set grads['dWl'] to dW1, grads['db1'] to db1, grads['dW2'] to dW2, grads['db2'] to db2
            grads['dW1'] = dW1
            grads['db1'] = db1
            grads['dW2'] = dW2
            grads['db2'] = db2
    
            # Update parameters.
            ### START CODE HERE ### (approx. 1 line of code)
            parameters = update_parameters(parameters, grads, learning_rate)
            ### END CODE HERE ###
    
            # Retrieve W1, b1, W2, b2 from parameters
            W1 = parameters["W1"]
            b1 = parameters["b1"]
            W2 = parameters["W2"]
            b2 = parameters["b2"]
    
            # Print the cost every 100 training example
            if print_cost and i % 100 == 0:
                print("Cost after iteration {}: {}".format(i, np.squeeze(cost)))
            if print_cost and i % 100 == 0:
                costs.append(cost)
    
        # plot the cost
        plt.plot(np.squeeze(costs))
        plt.ylabel('cost')
        plt.xlabel('iterations (per tens)')
        plt.title("Learning rate =" + str(learning_rate))
        plt.show()
    
        return parameters
    
    
    #调用一下
    parameters = two_layer_model(train_x, train_y, layers_dims = (n_x, n_h, n_y), num_iterations = 2500, print_cost=True)
    
    
    #下面用训练集和验证集分别看看准确度
    #predictions_train = predict(train_x, train_y, parameters)
    #训练集准确度百分之百
    #predictions_test = predict(test_x, test_y, parameters)
    #测试集准确度百分之七十二
    

    说明一下,上面的函数虽然用了,layers_dims数组来存储所有的神经网络层的结点个数,不过内部只进行了两层的计算,所以没有扩展到N层的能力。


    2.1 好了,现在开始真正的表演,建立一个可扩展的(即:可以自己设定要多少层网络,以及每层多少个结点)

    先上代码:

    #接下来开始N层的神经网络
    ### CONSTANTS ###
    #先设置一下各层的神经元数目
    #当然,也可以在后面调用的时候设置这个数组
    layers_dims = [12288 , 20 , 7 , 5 , 1] #  5-layer model
    
    # GRADED FUNCTION: L_layer_model
    def L_layer_model(X, Y, layers_dims, learning_rate=0.0075, num_iterations=3000, print_cost=False):  # lr was 0.009
        """
        Implements a L-layer neural network: [LINEAR->RELU]*(L-1)->LINEAR->SIGMOID.
    
        Arguments:
        X -- data, numpy array of shape (number of examples, num_px * num_px * 3)
        Y -- true "label" vector (containing 0 if cat, 1 if non-cat), of shape (1, number of examples)
        layers_dims -- list containing the input size and each layer size, of length (number of layers + 1).
        learning_rate -- learning rate of the gradient descent update rule
        num_iterations -- number of iterations of the optimization loop
        print_cost -- if True, it prints the cost every 100 steps
    
        Returns:
        parameters -- parameters learnt by the model. They can then be used to predict.
        """
        np.random.seed(1)
        costs = []  # keep track of cost
    
        # Parameters initialization.
        ### START CODE HERE ###
        parameters = initialize_parameters_deep(layers_dims)
        ### END CODE HERE ###
    
        # Loop (gradient descent)
        for i in range(0, num_iterations):
            #Forward propagation: [LINEAR -> RELU]*(L-1) -> LINEAR -> SIGMOID.
            ### START CODE HERE ### (≈ 1 line of code)
            AL, caches = L_model_forward(X, parameters)
            ### END CODE HERE ###
    
            # Compute cost.
            ### START CODE HERE ### (≈ 1 line of code)
            cost = compute_cost(AL, Y)
            ### END CODE HERE ###
    
            # Backward propagation.
            ### START CODE HERE ### (≈ 1 line of code)
            grads = L_model_backward(AL, Y, caches)
            ### END CODE HERE ###
    
            # Update parameters.
            ### START CODE HERE ### (≈ 1 line of code)
            parameters = update_parameters(parameters, grads, learning_rate)
            ### END CODE HERE ###
    
            # Print the cost every 100 training example
            if print_cost and i % 100 == 0:
                print("Cost after iteration %i: %f" % (i, cost))
            if print_cost and i % 100 == 0:
                costs.append(cost)
    
        # plot the cost
        plt.plot(np.squeeze(costs))
        plt.ylabel('cost')
        plt.xlabel('iterations (per tens)')
        plt.title("Learning rate =" + str(learning_rate))
        plt.show()
    
        return parameters
    

    上面就是这个分类器了,赶紧来调用一下

    #调用一下
    parameters = L_layer_model(train_x, train_y, layers_dims, num_iterations = 2500, print_cost = True)
    

    别慌,这个一调用,会花不少训练时间,在此期间可以看看每经过100次运算,你所得到的cost函数是多少
    过程如下:

    Cost after iteration 0: 0.771749
    Cost after iteration 100: 0.673350
    Cost after iteration 200: 0.648247
    Cost after iteration 300: 0.620384
    Cost after iteration 400: 0.568401
    Cost after iteration 500: 0.520754
    Cost after iteration 600: 0.469203
    Cost after iteration 700: 0.487263
    Cost after iteration 800: 0.358436
    Cost after iteration 900: 0.347641
    Cost after iteration 1000: 0.291955
    Cost after iteration 1100: 0.273223
    Cost after iteration 1200: 0.229250
    Cost after iteration 1300: 0.196667
    Cost after iteration 1400: 0.176585
    Cost after iteration 1500: 0.157727
    Cost after iteration 1600: 0.142742
    Cost after iteration 1700: 0.139015
    Cost after iteration 1800: 0.123863
    Cost after iteration 1900: 0.111514
    Cost after iteration 2000: 0.105953
    Cost after iteration 2100: 0.098199
    Cost after iteration 2200: 0.094213
    Cost after iteration 2300: 0.087161
    Cost after iteration 2400: 0.082077
    

    真是跑了一会儿啊,这多几层,,,跑一天不是梦。。。

    然后输出cost-num_itera的曲线

    cost下降曲线

    然后输出了对于训练集和测试集的准确率

    #看看训练集的准确度
    pred_train = predict(train_x, train_y, parameters)
    #看看测试集的准确度
    pred_test = predict(test_x, test_y, parameters)
    

    得到:

    train_Accuracy: 1.0
    test_Accuracy: 0.84
    

    现在可以拿自己的图跑一跑啦,看看它认不认识你的猫咪

    #测试一下自己的图片
    ## START CODE HERE ##
    my_image = "my_image.jpg" # change this to the name of your image file
    my_label_y = [1] # the true class of your image (1 -> cat, 0 -> non-cat)
    ## END CODE HERE ##
    
    fname = "images/" + my_image
    image = np.array(ndimage.imread(fname, flatten=False))
    my_image = scipy.misc.imresize(image, size=(num_px,num_px)).reshape((num_px*num_px*3,1))
    my_predicted_image = predict(my_image, my_label_y, parameters)
    
    plt.imshow(image)
    pylab.show()
    print ("y = " + str(np.squeeze(my_predicted_image)) + ", your L-layer model predicts a \"" + classes[int(np.squeeze(my_predicted_image)),].decode("utf-8") +  "\" picture.")
    

    会显示一下你的图片,然后下面输出预测:

    猫咪预测
    y = 1.0, your L-layer model predicts a "cat" picture.
    

    好了,我们的猫咪检测器就这样做好了!!!

    相关文章

      网友评论

        本文标题:吴恩达deep_learning_week4.2_Deep_Ne

        本文链接:https://www.haomeiwen.com/subject/iskicftx.html