美文网首页
深度学习-从零开始(2) - LinearRegression

深度学习-从零开始(2) - LinearRegression

作者: chengjian666 | 来源:发表于2019-07-16 23:05 被阅读0次

    本章背景

    本章是来源于coursera课程 python-machine-learning中的作业2内容。

    本章内容

    • 多项式线性回归
    • 决定系数 R2 (coefficient of determination) 的计算
    • ridge线性回归
    • lasso线性回归

    参考

    0. Polynomial LinearRegression(多项式线性回归)

    随机创建如下数据:

    import numpy as np
    import pandas as pd
    from sklearn.model_selection import train_test_split
    
    
    np.random.seed(0)
    n = 15
    x = np.linspace(0,10,n) + np.random.randn(n)/5
    y = np.sin(x)+x/6 + np.random.randn(n)/10
    
    
    X_train, X_test, y_train, y_test = train_test_split(x, y, random_state=0)
    

    创建特定维度的多项式线性回归:

    使用degree = 1,3,6 and 9 来训练X_train,并随机生成一些预测数据验证拟合结果:

    def test_1():
        from sklearn.linear_model import LinearRegression
        from sklearn.preprocessing import PolynomialFeatures
    
        xx_pred = np.linspace(0, 10, 100)
    
        degrees = [1, 3, 6, 9]
    
        results = []
        for index in range(0, 4):
            degree = degrees[index]
            regression = LinearRegression()
            featurizer = PolynomialFeatures(degree=degree)
            X_train_features = featurizer.fit_transform(X_train.reshape(-1, 1))
            regression.fit(X_train_features, y_train.reshape(-1, 1))
            xx_pred_features = featurizer.transform(xx_pred.reshape(-1, 1))
            yy_pred = regression.predict(xx_pred_features)
            # append the results
            results.append(yy_pred.reshape(1, -1))
            
        return np.concatenate(results)
    
    # 将几个维度的多项式拟合曲线绘制出来
    def plot_results(degree_predictions):
        import matplotlib.pyplot as plt
        plt.figure(figsize=(10,5))
        plt.plot(X_train, y_train, 'o', label='training data', markersize=10)
        plt.plot(X_test, y_test, 'o', label='test data', markersize=10)
        for i,degree in enumerate([1,3,6,9]):
            plt.plot(np.linspace(0,10,100), degree_predictions[i], alpha=0.8, lw=2, label='degree={}'.format(degree))
        plt.ylim(-1,2.5)
        plt.legend(loc=4)
        plt.show()
    
    plot_results(test_1())
    

    1. coefficient of determination (决定系数R2)

    决定系数(coefficient of determination)的计算方法:


    R2-score计算公式

    R2期待值越接近1说明拟合越好,越接近0说明拟合结果差。同时根据公式可以发现,在实际计算中R2是可能为负数的,通过简单计算,当R^2为负数时,说明:

    R2-score为负数

    说明拟合结果差到不如使用均值。
    还是使用上面的数据,分别计算X_train 和 X_test的R^2:

    def test_2():
        from sklearn.linear_model import LinearRegression
        from sklearn.preprocessing import PolynomialFeatures
        from sklearn.metrics.regression import r2_score
    
        # Your code here
        results = []
        model_cnt = 10
        result_train = []
        result_test = []
    
        for degree in range(0, model_cnt):
            linearRegression = LinearRegression()
            featurizer = PolynomialFeatures(degree=degree)
            X_train_features = featurizer.fit_transform(X_train.reshape(-1, 1))
            y_train_features = y_train.reshape(-1, 1)
            linearRegression.fit(X_train_features, y_train_features)
            y_train_pred = linearRegression.predict(X_train_features)
    
            print('X_train r2_score ==> : ', r2_score(y_train_features, y_train_pred))
            result_train.append(r2_score(y_train_features, y_train_pred))
    
            # calculate the values for Test set
            X_test_features = featurizer.transform(X_test.reshape(-1, 1))
            y_test_pred = linearRegression.predict(X_test_features)
            y_test_features = y_test.reshape(-1, 1)
            print('X_test r2-score ==> : ', r2_score(y_test_features, y_test_pred))
            result_test.append(r2_score(y_test_features, y_test_pred))
    
        results.append(np.array(result_train).reshape(10, ))
        results.append(np.array(result_test).reshape(10, ))
        print(results[0].shape, results[1].shape)
        print(results)
        return results# Your answer here
    

    从代码中也可以看出来,在sklearn工具包中已经包含了r2_score的计算函数,直接传入真实值和预测值即可计算,当然可以通过如上公式自行计算。

    2. Ridge线性回归

    Ridge线性回归是改良后的最小二乘法, 是有偏估计的回归方法, 即给损失函数加上一个正则化项, 也叫惩罚项(L2范数),防止过拟合。

    Ridge回归的特点是以损失部分信息、降低精度为代价获得回归系数更为符合实际、更可靠的回归方法,对病态数据的拟合要强于最小二乘法。

    Ridge的公式如下

    Ridge回归损失函数

    其中, m是样本量, n是特征数, λ是惩罚项参数(其取值大于0), 加惩罚项主要为了让模型参数的取值不能过大. 当λ趋于无穷大时, 对应βj趋向于0, 而βj表示的是因变量随着某一自变量改变一个单位而变化的数值(假设其他自变量均保持不变), 这时, 自变量之间的共线性对因变量的影响几乎不存在, 故其能有效解决自变量之间的多重共线性问题, 同时也能防止过拟合.

    代码示例:

        import numpy as np
        import pandas as pd
    
        from sklearn.model_selection import train_test_split
        from matplotlib.pyplot import MultipleLocator
        from sklearn.preprocessing import PolynomialFeatures
        from sklearn.linear_model import Lasso, LinearRegression, Ridge
        from sklearn.metrics.regression import r2_score
        
        np.random.seed(0)
        n = 15
        x = np.linspace(0, 10, n) + np.random.randn(n) / 5
        y = np.sin(x) + x / 6 + np.random.randn(n) / 10
    
        X_train, X_test, y_train, y_test = train_test_split(x, y, random_state=0)
    
    
    
        # Your code here
        normalLinearRegression = LinearRegression()
        ridgeLinearRegression = Ridge(alpha=0.01, max_iter=10000, solver='svd')
    
        featurizer = PolynomialFeatures(degree=12)
        X_train_features = featurizer.fit_transform(X_train.reshape(-1, 1))
        X_test_features = featurizer.transform(X_test.reshape(-1, 1))
        # train the non-regularized linearRegression model
        normalLinearRegression.fit(X_train_features, y_train.reshape(-1, 1))
        y_test_pred_normal = normalLinearRegression.predict(X_test_features)
        # cal the R2 score for non-regularized model
        r2_score_normal = r2_score(y_test.reshape(-1, 1), y_test_pred_normal)
        print('non-regularized linearRegression r2-score ==> ', r2_score_normal)
    
        # train the ridge linearRegression model
        ridgeLinearRegression.fit(X_train_features, y_train.reshape(-1, 1))
        y_test_pred_ridge = ridgeLinearRegression.predict(X_test_features)
        # cal the R2-score for Ridge-regression
        r2_score_ridge = r2_score(y_test.reshape(-1, 1), y_test_pred_ridge)
        print('ridge-regularized linearRegression r2-score ==> ', r2_score_ridge)
    

    Ridge回归并不能解决减少系数/维度数量的问题,其系数均不为0。

    3. LASSO线性回归

    模型参数越多复杂度越高,即使用线性回归依然有很多的参数需要训练,并且这也会造成一定程度上的过拟合。并且最终得到的模型的可解释性也不高。这个时候可以考虑引入lasso回归。

    Lasso回归的特点是可以在拟合训练数据的同时进行变量选择(Variable Selection)。那么它是通过什么机制选择的呢?答案就是:正则化(Regularization)!或者可以简单的把这个东西叫做惩罚项。

    LASSO的公式如下

    Lasso回归损失函数

    代码示例:

        import numpy as np
        import pandas as pd
    
        from sklearn.model_selection import train_test_split
        from matplotlib.pyplot import MultipleLocator
        from sklearn.preprocessing import PolynomialFeatures
        from sklearn.linear_model import Lasso, LinearRegression, Ridge
        from sklearn.metrics.regression import r2_score
        
        np.random.seed(0)
        n = 15
        x = np.linspace(0, 10, n) + np.random.randn(n) / 5
        y = np.sin(x) + x / 6 + np.random.randn(n) / 10
    
        X_train, X_test, y_train, y_test = train_test_split(x, y, random_state=0)
    
    
    
        # Your code here
        normalLinearRegression = LinearRegression()
        ridgeLinearRegression = Ridge(alpha=0.01, max_iter=10000, solver='svd')
    
        featurizer = PolynomialFeatures(degree=12)
        X_train_features = featurizer.fit_transform(X_train.reshape(-1, 1))
        X_test_features = featurizer.transform(X_test.reshape(-1, 1))
        # train the non-regularized linearRegression model
        normalLinearRegression.fit(X_train_features, y_train.reshape(-1, 1))
        y_test_pred_normal = normalLinearRegression.predict(X_test_features)
        # cal the R2 score for non-regularized model
        r2_score_normal = r2_score(y_test.reshape(-1, 1), y_test_pred_normal)
        print('non-regularized linearRegression r2-score ==> ', r2_score_normal)
    
        # train the lasso linearRegression model
        lassoLinearRegression.fit(X_train_features, y_train.reshape(-1, 1))
        y_test_pred_lasso = lassoLinearRegression.predict(X_test_features)
        # cal the R2 score for lasso-regularized model
        r2_score_lasso = r2_score(y_test.reshape(-1, 1), y_test_pred_lasso)
        print('lasso-regularized linearRegression r2-score ==> ', r2_score_lasso)
    
    

    Lasso回归可以解决减少系数/维度数量的问题,其部分系数为0。

    相关文章

      网友评论

          本文标题:深度学习-从零开始(2) - LinearRegression

          本文链接:https://www.haomeiwen.com/subject/jmoxlctx.html