HashMap是非线程安全的。也就是说,在多线程环境下,操作HashMap会导致各种各样的线程安全问题。比如说在HashMap扩容重哈希时出现的死循环问题,脏读问题等。
Java 7 的HashMap的源码,Java 8中这步已经简化了,只做了一次16位右位移异或混合,而不是四次。但原理未改变。
//java 7
static int hash(int h){
h ^= (h >>> 20) ^ (h >>> 12);
return h ^ (h >>> 7) ^ (h >>>4);
}
//Java 8中的散列值优化函数
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); //key.hashCode()为哈希算法,返回初始哈希值
// ^ 位异或 >>> 无符号右移
}
- ==: 该操作符生成的是一个boolean结果,它计算的是操作数的值之间的关系。
- equals: Object 的实例方法,比较两个对象的content是否相同
- hashCode: Object 的native方法,获取对象的哈希值,用于确定该对象在哈希表中的索引位置,它实际上是一个int型整数。
HashMap实现原理
如果一个桶中的元素个数超过TREEIFY_THRESHOLD(默认是8),就使用红黑树来替换链表,从而提高速度。
这个替换的方法-treeifyBin()即树形化。
/**
* Replaces all linked nodes in bin at index for given hash unless
* table is too small, in which case resizes instead.
*将桶内所有的 链表节点 替换成 红黑树节点
*/
final void treeifyBin(Node<K,V>[] tab, int hash) {
int n, index; Node<K,V> e;
//如果当前哈希表为空,或者哈希表中元素的个数小于 进行树形化的阀值(默认为64),就去新建/扩容
if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
resize();
else if ((e = tab[index = (n - 1) & hash]) != null) {
//如果哈希表中的元素个数超过了 树形化的阀值,进行树形化
//e 是哈希表中指定位置桶里的链表节点,从第一个开始
TreeNode<K,V> hd = null, tl = null; //红黑树的头,尾节点
do {
//新建一个树形节点,内容和当前链表节点 e 一致
TreeNode<K,V> p = replacementTreeNode(e, null);
if (tl == null) //确定树头节点
hd = p;
else {
p.prev = tl;
tl.next = p;
}
tl = p;
} while ((e = e.next) != null);
// 让桶里的第一个元素指向新建的红黑树头节点,以后这个桶里的元素就是红黑树而不是链表了
if ((tab[index] = hd) != null)
hd.treeify(tab);
}
}
//HashMap.class
static final class TreeNode<K,V> extends LinkedHashMap.LinkedHashMapEntry<K,V> {
TreeNode<K,V> parent; // red-black tree links
TreeNode<K,V> left;
TreeNode<K,V> right;
TreeNode<K,V> prev; // needed to unlink next upon deletion
boolean red;
}
//LinkedHashMap.class
static class LinkedHashMapEntry<K,V> extends HashMap.Node<K,V> {
LinkedHashMapEntry<K,V> before, after;
}
/**HashMap.class
* Basic hash bin node, used for most entries. (See below for
* TreeNode subclass, and in LinkedHashMap for its Entry subclass.)
*/
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
V value;
Node<K,V> next;
/**
* Forms tree of the nodes linked from this node.
* @return root of tree
*/
final void treeify(Node<K,V>[] tab) {
TreeNode<K,V> root = null;
for (TreeNode<K,V> x = this, next; x != null; x = next) {
next = (TreeNode<K,V>)x.next;
x.left = x.right = null;
if (root == null) {
x.parent = null;
x.red = false;
root = x;
}
else {
K k = x.key;
int h = x.hash;
Class<?> kc = null;
for (TreeNode<K,V> p = root;;) {
int dir, ph;
K pk = p.key;
if ((ph = p.hash) > h)
dir = -1;
else if (ph < h)
dir = 1;
else if ((kc == null &&
(kc = comparableClassFor(k)) == null) ||
(dir = compareComparables(kc, k, pk)) == 0)
dir = tieBreakOrder(k, pk);
TreeNode<K,V> xp = p;
if ((p = (dir <= 0) ? p.left : p.right) == null) {
x.parent = xp;
if (dir <= 0)
xp.left = x;
else
xp.right = x;
root = balanceInsertion(root, x);
break;
}
}
}
}
moveRootToFront(tab, root);
}
/**
* Initializes or doubles table size. If null, allocates in
* accord with initial capacity target held in field threshold.
* Otherwise, because we are using power-of-two expansion, the
* elements from each bin must either stay at same index, or move
* with a power of two offset in the new table.
*
* @return the table
*/
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
if (oldCap > 0) {
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
if (oldTab != null) {
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
如果需要满足线程安全,可以用 Collections的synchronizedMap方法使HashMap具有线程安全的能力,或者使用ConcurrentHashMap。
网友评论