一、单成分单变量高斯模型
图1.1 单成分单变量高斯模型1图1.2 单成分单变量高斯模型2
图1.3 单成分单变量高斯模型3
二、单成分多变量高斯模型
图2.1 单成分多变量高斯模型1若协方差矩阵为对角矩阵且对角线上值相等,两变量高斯分布的等值线为圆形。
图2.2 单成分多变量高斯模型2若协方差矩阵为对角矩阵且对角线上值不等,两变量高斯分布的等值线为椭圆形。长轴平行于取较大值的变量所在的轴,短轴平行于取较小值的变量所在的轴。
图2.3 单成分多变量高斯模型3若协方差矩阵为非对角矩阵,表明变量之间存在相关性,相关系数取-1到1之间的非0值。
图2.4 单成分多变量高斯模型4上图中两变量高斯分布的等值线长轴平行于这条直线。
图2.5 单成分多变量高斯模型5三、多成分多变量高斯混合模型
基于先验概率选择成分后,基于生成数据。
图3.1 多成分多变量高斯混合模型1为减少参数数目,常假设协方差矩阵为对角矩阵且对角线取值相等。
图3.2 多成分多变量高斯混合模型2图3.3 多成分多变量高斯混合模型3
如果哪个成分生成哪个数据的对应关系已知,即强制对齐,这时使用MLE进行参数估计
图3.4 多成分多变量高斯混合模型4通常情况下,这种生成数据的对应关系是未知的,即存在隐变量,这时使用EM替代MLE进行参数估计。
图3.5 多成分多变量高斯混合模型5E步其实计算的是,即软分配。
强制对齐下,将分配给其中的一个成分;
软分配下,将以一定的概率值分配给每个成分。
用GMM对数据进行拟合比用单个Gaussian拟合数据更加准确。
图3.7 多成分多变量高斯混合模型7图3.8 多成分多变量高斯混合模型8
图3.9 多成分多变量高斯混合模型9
网友评论