美文网首页
tf- CNN 01

tf- CNN 01

作者: Jakai | 来源:发表于2017-08-09 15:08 被阅读0次
    import tensorflow as tf
    
    # Import MNIST data
    from tensorflow.examples.tutorials.mnist import input_data
    mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
    
    # Parameters
    learning_rate = 0.001
    ''' 居然要这么大的迭代次数 '''
    training_iters = 200000
    batch_size = 128
    display_step = 10
    
    # Network Parameters
    n_input = 784 # MNIST data input (img shape: 28*28)
    n_classes = 10 # MNIST total classes (0-9 digits)
    dropout = 0.75 # Dropout, probability to keep units
    
    # tf Graph input
    x = tf.placeholder(tf.float32, [None, n_input])
    y = tf.placeholder(tf.float32, [None, n_classes])
    
    ''' keep_prob用于dropout,dropout的目的是减少过拟合,他的实现方法是在训练的过程中,随机的去掉一些链接,这个keep_prob算是一个hyper parameter超级参数,有很多经验值可用 '''
    keep_prob = tf.placeholder(tf.float32) #dropout (keep probability)
    
    
    # Create some wrappers for simplicity
    ''' 生成一个卷积层, stride代表卷积核的每次滑动距离 '''
    def conv2d(x, W, b, strides=1):
        # Conv2D wrapper, with bias and relu activation
        '''
        conv2d详解
        TODO
        '''
        x = tf.nn.conv2d(x, W, strides=[1, strides, strides, 1], padding='SAME')
        x = tf.nn.bias_add(x, b)
        return tf.nn.relu(x)
    
    ''' 池化层,这是一个2x2的池化,也就是前一层每四个神经元的输出映射到下一层的一个神经元的输入,进而将神经元数量压缩到原来的四分之一,减少后续层处理问题所需的计算量 '''
    def maxpool2d(x, k=2):
        # MaxPool2D wrapper
        return tf.nn.max_pool(x, ksize=[1, k, k, 1], strides=[1, k, k, 1],
                              padding='SAME')
    
    
    # Create model
    '''
    该卷积网络由卷积层+2x2池化层+卷积层+2x2池化层+一层全连接+输出层组成
    dropout发生在全连接层
    因而由四组权重值:分别是卷积1层权重,卷积2层权重,全连接层权重,输出层权重
    http://neuralnetworksanddeeplearning.com/chap6.html
    '''
    def conv_net(x, weights, biases, dropout):
        # Reshape input picture
        x = tf.reshape(x, shape=[-1, 28, 28, 1])
    
        # Convolution Layer
        conv1 = conv2d(x, weights['wc1'], biases['bc1'])
        # Max Pooling (down-sampling)
        conv1 = maxpool2d(conv1, k=2)
    
        # Convolution Layer
        conv2 = conv2d(conv1, weights['wc2'], biases['bc2'])
        # Max Pooling (down-sampling)
        conv2 = maxpool2d(conv2, k=2)
    
        # Fully connected layer
        # Reshape conv2 output to fit fully connected layer input
        fc1 = tf.reshape(conv2, [-1, weights['wd1'].get_shape().as_list()[0]])
        fc1 = tf.add(tf.matmul(fc1, weights['wd1']), biases['bd1'])
        fc1 = tf.nn.relu(fc1)
        # Apply Dropout
        fc1 = tf.nn.dropout(fc1, dropout)
    
        # Output, class prediction
        out = tf.add(tf.matmul(fc1, weights['out']), biases['out'])
        return out
    
    # Store layers weight & bias
    ''' 卷积核大小5x5,通过两次池化28x28的输入变成了7x7的输入,全连接层有1024个输出,一般理解为1024个高维特征'''
    weights = {
        # 5x5 conv, 1 input, 32 outputs
        'wc1': tf.Variable(tf.random_normal([5, 5, 1, 32])),
        # 5x5 conv, 32 inputs, 64 outputs
        'wc2': tf.Variable(tf.random_normal([5, 5, 32, 64])),
        # fully connected, 7*7*64 inputs, 1024 outputs
        'wd1': tf.Variable(tf.random_normal([7*7*64, 1024])),
        # 1024 inputs, 10 outputs (class prediction)
        'out': tf.Variable(tf.random_normal([1024, n_classes]))
    }
    
    biases = {
        'bc1': tf.Variable(tf.random_normal([32])),
        'bc2': tf.Variable(tf.random_normal([64])),
        'bd1': tf.Variable(tf.random_normal([1024])),
        'out': tf.Variable(tf.random_normal([n_classes]))
    }
    
    # Construct model
    pred = conv_net(x, weights, biases, keep_prob)
    
    # Define loss and optimizer
    ''' 依旧使用softmax交叉熵cost和Adam优化器 '''
    cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
    optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
    
    # Evaluate model
    correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
    
    # Initializing the variables
    init = tf.initialize_all_variables()
    
    # Launch the graph
    with tf.Session() as sess:
        sess.run(init)
        step = 1
        # Keep training until reach max iterations
        while step * batch_size < training_iters:
            batch_x, batch_y = mnist.train.next_batch(batch_size)
            # Run optimization op (backprop)
            sess.run(optimizer, feed_dict={x: batch_x, y: batch_y,
                                           keep_prob: dropout})
            if step % display_step == 0:
                # Calculate batch loss and accuracy
                loss, acc = sess.run([cost, accuracy], feed_dict={x: batch_x, y: batch_y, keep_prob: 1.})
                print("Iter " + str(step*batch_size) + ", Minibatch Loss= " + \
                      "{:.6f}".format(loss) + ", Training Accuracy= " + \
                      "{:.5f}".format(acc))
            step += 1
        print("Optimization Finished!")
    
        # Calculate accuracy for 256 mnist test images
        print("Testing Accuracy:", \
            sess.run(accuracy, feed_dict={x: mnist.test.images[:256],
                                          y: mnist.test.labels[:256],
                                          keep_prob: 1.}))
    

    相关文章

      网友评论

          本文标题:tf- CNN 01

          本文链接:https://www.haomeiwen.com/subject/luxqrxtx.html