美文网首页
用Pytorch定义并训练一个简单的全连接网络

用Pytorch定义并训练一个简单的全连接网络

作者: LabVIEW_Python | 来源:发表于2023-01-02 19:06 被阅读0次

    用Pytorch定义并训练一个简单的全连接网络,完整步骤如下:

    import torch
    import torch.nn as nn
    import torch.optim as optim
    import torch.nn.functional as F
    from torch.utils.data import DataLoader
    import torchvision.datasets as datasets
    import torchvision.transforms as transforms
    
    # Step1: Define Fully connected network
    class NN(nn.Module):
        def __init__(self, num_features, num_classes=10):
            super().__init__()
            self.fc1 =nn.Linear(num_features, 50)
            self.fc2 = nn.Linear(50, num_classes)
    
        def forward(self, x):
            x = F.relu(self.fc1(x))
            x = self.fc2(x)
            return x
    
    # Set device & Hyperparameters
    device = "cuda" if torch.cuda.is_available() else "cpu"
    
    num_features = 784
    num_classes = 10
    learning_rate = 1e-3
    batch_size = 64
    num_epochs = 3
    
    # Step2: Load data
    train_dataset = datasets.MNIST(root="dataset/", train=True, transform=transforms.ToTensor(), download=True)
    train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
    
    test_dataset = datasets.MNIST(root="dataset/", train=False, transform=transforms.ToTensor(), download=True)
    test_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=False)
    
    # Step3: Initialize network
    model = NN(num_features, num_classes).to(device)
    
    # Step4: define Loss and optimizer
    loss_fn = nn.CrossEntropyLoss()
    optimizer = optim.Adam(model.parameters(), lr=learning_rate)
    
    # Step5: Train Network
    for epoch in range(num_epochs):
        losses=[]
        for batch_idx, (data, targets) in enumerate(train_dataloader):
            data = data.to(device=device)
            targets = targets.to(device=device)
            data = data.reshape(data.shape[0], -1)
    
            # forward
            preds = model(data)
            loss = loss_fn(preds, targets)
            losses.append(loss)
            
            # backward
            optimizer.zero_grad()
            loss.backward()
    
            # GSD
            optimizer.step()
        print(f"Epoch:{epoch}, loss is {sum(losses)/len(losses)}.")
    
    # Step6: Chekc accuracy on test dataset
    num_correct = 0
    num_samples = 0
    model.eval()
    
    with torch.no_grad():
        for data, targets in test_dataloader:
            data = data.to(device)
            targets = targets.to(device)
            data = data.reshape(data.shape[0], -1)
    
            preds = model(data)
            _, results = preds.max(1)
            # print(preds.shape, results.shape, targets.shape)
            num_correct += (results == targets).sum()
            num_samples += results.size(0)
        print(f"The accuracy on test dataset is : {float(num_correct)/float(num_samples)*100:.2f}%")
    
    

    运行结果:

    Epoch:0, loss is 0.42042621970176697.
    Epoch:1, loss is 0.20832164585590363.
    Epoch:2, loss is 0.15770433843135834.
    The accuracy is : 96.20%

    相关文章

      网友评论

          本文标题:用Pytorch定义并训练一个简单的全连接网络

          本文链接:https://www.haomeiwen.com/subject/lxwccdtx.html