- Median of Two Sorted Arrays
思路
构造两个等长的集合:
search m 二分find
易错点:全左或全右赋值时错误
public class MedianOfTwoSortedArrayOfDifferentLength {
public double findMedianSortedArrays(int input1[], int input2[]) {
//if input1 length is greater than switch them so that input1 is smaller than input2.
if (input1.length > input2.length) {
return findMedianSortedArrays(input2, input1);
}
int x = input1.length;
int y = input2.length;
int low = 0;
int high = x;
while (low <= high) {
int partitionX = (low + high)/2;
int partitionY = (x + y + 1)/2 - partitionX;
//if partitionX is 0 it means nothing is there on left side. Use -INF for maxLeftX
//if partitionX is length of input then there is nothing on right side. Use +INF for minRightX
int maxLeftX = (partitionX == 0) ? Integer.MIN_VALUE : input1[partitionX - 1];
int minRightX = (partitionX == x) ? Integer.MAX_VALUE : input1[partitionX];
int maxLeftY = (partitionY == 0) ? Integer.MIN_VALUE : input2[partitionY - 1];
int minRightY = (partitionY == y) ? Integer.MAX_VALUE : input2[partitionY];
if (maxLeftX <= minRightY && maxLeftY <= minRightX) {
//We have partitioned array at correct place
// Now get max of left elements and min of right elements to get the median in case of even length combined array size
// or get max of left for odd length combined array size.
if ((x + y) % 2 == 0) {
return ((double)Math.max(maxLeftX, maxLeftY) + Math.min(minRightX, minRightY))/2;
} else {
return (double)Math.max(maxLeftX, maxLeftY);
}
} else if (maxLeftX > minRightY) { //we are too far on right side for partitionX. Go on left side.
high = partitionX - 1;
} else { //we are too far on left side for partitionX. Go on right side.
low = partitionX + 1;
}
}
//Only we we can come here is if input arrays were not sorted. Throw in that scenario.
throw new IllegalArgumentException();
}
public static void main(String[] args) {
int[] x = {1, 3, 8, 9, 15};
int[] y = {7, 11, 19, 21, 18, 25};
MedianOfTwoSortedArrayOfDifferentLength mm = new MedianOfTwoSortedArrayOfDifferentLength();
mm.findMedianSortedArrays(x, y);
}
}
时间复杂度 Olog(min(m,n))
5.Longest Palindromic Substring
中心开花;
o(n2)
class Solution {
public String longestPalindrome(String s) {
int start = 0, end = 0;
int len1, len2, len;
for (int i = 0; i < s.length(); i++) {
len1 = extendCorner(s, i, i);
len2 = extendCorner(s, i, i+1);
len = Math.max(len1, len2);
if (len > end - start) {
start = i - (len - 1)/2;
end = i + len/2;
}
}
return s.substring(start, end+1);
}
private int extendCorner(String s, int left, int right) {
while (left >= 0 && right < s.length() && s.charAt(left) == s.charAt(right)) {
left--;
right++;
}
return right - left - 1;
}
}
网友评论