美文网首页
Kafka学习笔记(二)架构深入

Kafka学习笔记(二)架构深入

作者: 做个合格的大厂程序员 | 来源:发表于2020-07-14 17:44 被阅读0次

1. Kafka工作流程及文件存储机制

Xnip2020-07-08_15-48-17

Kafka中消息是以topic进行分类的,生产者生产消息,消费者消费消息,都是面向topic的。

topic是逻辑上的概念,而partition是物理上的概念,每个partition对应于一个log文件,该log文件中存储的就是producer生产的数据。Producer生产的数据会被不断追加到该log文件末端,且每条数据都有自己的offset。消费者组中的每个消费者,都会实时记录自己消费到了哪个offset,以便出错恢复时,从上次的位置继续消费。

Xnip2020-07-08_15-50-51

由于生产者生产的消息会不断追加到log文件末尾,为防止log文件过大导致数据定位效率低下,Kafka采取了分片和索引机制,将每个partition分为多个segment。每个segment对应两个文件——“.index”文件和“.log”文件。这些文件位于一个文件夹下,该文件夹的命名规则为:topic名称+分区序号。例如,first这个topic有三个分区,则其对应的文件夹为first-0,first-1,first-2。

index和log文件以当前segment的第一条消息的offset命名。下图为index文件和log文件的结构示意图。

Xnip2020-07-08_15-51-41

“.index”文件存储大量的索引信息,“.log”文件存储大量的数据,索引文件中的元数据指向对应数据文件中message的物理偏移地址。

2. Kafka生产者

2.1 分区策略

分区的原因

(1)方便在集群中扩展,每个Partition可以通过调整以适应它所在的机器,而一个topic又可以有多个Partition组成,因此整个集群就可以适应任意大小的数据了;

(2)可以提高并发,因为可以以Partition为单位读写了。

分区的原则

我们需要将producer发送的数据封装成一个ProducerRecord对象。

image
  1. 指明 partition 的情况下,直接将指明的值直接作为 partiton 值;
  2. 没有指明 partition 值但有 key 的情况下,将 key 的 hash 值与 topic 的 partition 数进行取余得到 partition 值;
  3. 既没有 partition 值又没有 key 值的情况下,第一次调用时随机生成一个整数(后面每次调用在这个整数上自增),将这个值与 topic 可用的 partition 总数取余得到 partition 值,也就是常说的 round-robin 算法。

2.2 数据可靠性保证

为保证producer发送的数据,能可靠的发送到指定的topic,topic的每个partition收到producer发送的数据后,都需要向producer发送ack(acknowledgement确认收到),如果producer收到ack,就会进行下一轮的发送,否则重新发送数据。

Xnip2020-07-08_15-58-21

2.2.1 副本数据同步策略

方案 优点 缺点
半数以上完成同步,就发送ack 延迟低 选举新的leader时,容忍n台节点的故障,需要2n+1个副本
全部完成同步,才发送ack 选举新的leader时,容忍n台节点的故障,需要n+1个副本 延迟高

Kafka选择了第二种方案,原因如下:

  1. 同样为了容忍n台节点的故障,第一种方案需要2n+1个副本,而第二种方案只需要n+1个副本,而Kafka的每个分区都有大量的数据,第一种方案会造成大量数据的冗余。
  2. 虽然第二种方案的网络延迟会比较高,但网络延迟对Kafka的影响较小。

2.2.2 ISR

采用第二种方案之后,设想以下情景:leader收到数据,所有follower都开始同步数据,但有一个follower,因为某种故障,迟迟不能与leader进行同步,那leader就要一直等下去,直到它完成同步,才能发送ack。这个问题怎么解决呢?

Leader维护了一个动态的in-sync replica set (ISR),意为和leader保持同步的follower集合。当ISR中的follower完成数据的同步之后,leader就会给follower发送ack。如果follower长时间未向leader同步数据,则该follower将被踢出ISR,该时间阈值由replica.lag.time.max.ms参数设定。Leader发生故障之后,就会从ISR中选举新的leader。

2.2.3 ack应答机制

对于某些不太重要的数据,对数据的可靠性要求不是很高,能够容忍数据的少量丢失,所以没必要等ISR中的follower全部接收成功。

所以Kafka为用户提供了三种可靠性级别,用户根据对可靠性和延迟的要求进行权衡,选择以下的配置。

acks参数配置:acks:

  • 0:producer不等待broker的ack,这一操作提供了一个最低的延迟,broker一接收到还没有写入磁盘就已经返回,当broker故障时有可能丢失数据;
  • producer等待broker的ack,partition的leader落盘成功后返回ack,如果在follower同步成功之前leader故障,那么将会丢失数据;
  • -1(all):producer等待broker的ack,partition的leader和follower全部落盘成功后才返回ack。但是如果在follower同步完成后,broker发送ack之前,leader发生故障,那么会造成数据重复。
Xnip2020-07-08_16-03-43 Xnip2020-07-08_16-04-11

2.2.4 故障处理细节

Xnip2020-07-08_16-06-34
  1. follower故障
    1. follower发生故障后会被临时踢出ISR,待该follower恢复后,follower会读取本地磁盘记录的上次的HW,并将log文件高于HW的部分截取掉,从HW开始向leader进行同步。等该follower的LEO大于等于该Partition的HW,即follower追上leader之后,就可以重新加入ISR了。
  2. leader故
    1. leader发生故障之后,会从ISR中选出一个新的leader,之后,为保证多个副本之间的数据一致性,其余的follower会先将各自的log文件高于HW的部分截掉,然后从新的leader同步数据。

3. Kafka消费者

3.1 消费方式

consumer采用pull(拉)模式从broker中读取数据。

push(推)模式很难适应消费速率不同的消费者,因为消息发送速率是由broker决定的。它的目标是尽可能以最快速度传递消息,但是这样很容易造成consumer来不及处理消息,典型的表现就是拒绝服务以及网络拥塞。而pull模式则可以根据consumer的消费能力以适当的速率消费消息。

pull模式不足之处是,如果kafka没有数据,消费者可能会陷入循环中,一直返回空数据。针对这一点,Kafka的消费者在消费数据时会传入一个时长参数timeout,如果当前没有数据可供消费,consumer会等待一段时间之后再返回,这段时长即为timeout。

3.2 分区分配策略

一个consumer group中有多个consumer,一个 topic有多个partition,所以必然会涉及到partition的分配问题,即确定那个partition由哪个consumer来消费。

Kafka有两种分配策略,一是roundrobin,一是range。

roundrobin : 轮询机制,动态平均分配
range: 固定等额分配,容易产生分配不均

3.3 offset的维护

由于consumer在消费过程中可能会出现断电宕机等故障,consumer恢复后,需要从故障前的位置的继续消费,所以consumer需要实时记录自己消费到了哪个offset,以便故障恢复后继续消费。

Kafka 0.9版本之前,consumer默认将offset保存在Zookeeper中,从0.9版本开始,consumer默认将offset保存在Kafka一个内置的topic中,该topic为__consumer_offsets。

3.4 Kafka 高效读写数据

3.4.1 顺序写磁盘

Kafka的producer生产数据,要写入到log文件中,写的过程是一直追加到文件末端,为顺序写。官网有数据表明,同样的磁盘,顺序写能到到600M/s,而随机写只有100k/s。这与磁盘的机械机构有关,顺序写之所以快,是因为其省去了大量磁头寻址的时间。

3.4.2 零复制技术

Xnip2020-07-08_16-13-02

免去了对用户端的读写流程。

3.5 Zookeeper在Kafka中的作用

Kafka集群中有一个broker会被选举为Controller,负责管理集群broker的上下线,所有topic的分区副本分配和leader选举等工作。

Controller的管理工作都是依赖于Zookeeper的。

以下为partition的leader选举过程:


Xnip2020-07-08_16-14-17

相关文章

  • Kafka学习笔记(二)架构深入

    1. Kafka工作流程及文件存储机制 Kafka中消息是以topic进行分类的,生产者生产消息,消费者消费消息,...

  • Kafka-interview-questions

    一 Kafka架构 Kafka架构图示 二 Kafka压测   Kafka官方自带压力测试脚本(kafka-con...

  • kafka学习笔记-深入kafka内核

    参考:极客时间-Kafka核心技术与实战内容:kafka副本机制、消费者重平衡、kafka控制器、消息可见性(高水...

  • kafka

    一、什么是Kafka1、kafka简介 2、kafka基本架构 二、kafka原理 三、Zookeeper在kaf...

  • Kafka

    一、什么是Kafka1、kafka简介 2、kafka基本架构 二、kafka原理 三、Zookeeper在kaf...

  • kafka学习系列

    Kafka学习总结(一)——Kafka简介 Kafka学习总结(二)——Kafka设计原理 Kafka学习总结(三...

  • kafka架构师2-图解kafka源码1发送者流程

    架构 Client生产发送流程Server:kafka 网络架构kafka 数据存储kafka 副本同步kafka...

  • Kafka学习笔记(二)

    Kafka环境搭建 准备工作 Kafka集群是把状态保存在Zookeeper中的,首先要搭建Zookeeper集群...

  • kafka学习笔记(二)

    一、基本概念 kafka中每条记录包含一个key,一个value和一个时间戳。 Topics 每个Topic,ka...

  • Kafka学习笔记(二) :初探Kafka

    看完上一篇,相信大家对消息系统以及Kafka的整体构成都有了初步了解,学习一个东西最好的办法,就是去使用它,今天就...

网友评论

      本文标题:Kafka学习笔记(二)架构深入

      本文链接:https://www.haomeiwen.com/subject/mmmfhktx.html