library(ggplot2)
data1 = read.table("Organ_type",sep="\t",header=TRUE)
head(data1)
ggplot(data1, aes(x=Organ_type, y=Count)) + geom_boxplot()+theme(axis.title.x =element_text(size=15), axis.title.y=element_text(size=15))
install.packages( 'pheatmap')
library( 'pheatmap')
test = matrix(rnorm( 100), 10, 10)
pheatmap( test,clustering_method = 'ward.D')
拓展
pheatmap(exp_ds,
show_rownames = T,
show_colnames = T,
scale = "row",
color =colorRampPalette(c("#8854d0", "#ffffff","#fa8231"))(100),
clustering_distance_rows = 'euclidean', # 计算聚类间距的算法,可选'correlation', 'euclidean', 'maximum', 'manhattan', 'canberra', 'binary', 'minkowski'
clustering_method = 'complete', # 聚类方法, 可选'ward', 'ward.D', 'ward.D2', 'single', 'complete', 'average', 'mcquitty', 'median' or 'centroid'
)
原文链接:https://blog.csdn.net/u011262253/article/details/100638123
https://blog.csdn.net/u011262253/article/details/100638123
网友评论