美文网首页tensorflow
基于Tensorflow的自定义对象识别检测模型的训练及视频实时

基于Tensorflow的自定义对象识别检测模型的训练及视频实时

作者: Aln_ | 来源:发表于2019-04-25 13:35 被阅读0次

开题

一、 Python 、Tensorflow 安装及环境配置
二、 Object Detection API配置
三、 LabelImage对训练样本标注处理
四、 标注后训练样本验证样本格式转换tfrecord
五、 训练模型选取及参数配置
六、 定位在Object Detection文件下train.py开始训练
七、 上一步训练结果固化成pb模型
八、 视频流中调用模型预测

跟着上一篇的节奏,接下来是

3、模型类别选择参数配置

现在已经有了可供tensorflow直接使用的tfrecord数据了,接下来是对模型类别的选择,
官方模型分类 https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md 提供了众多可使用完整模型样例

TIM截图20190424170119.png
红色标记栏是官方给出的对应模型预测耗时(实际应用中远高出标准),也可以看出ssd_mobilenet_****系列的的确是轻量化快速化的(速度快但识别率相对rcnn类偏低)
了解了各个模型性能后在该文件下选择适合的模型配置文件 TIM截图20190424174146.png
实时类的ssd系列的好点,追求精度的话就是faster_rcnn_resnet50系列的,其实打开不同config文件里面需要我们配置的东西都是一样的(ssd_mobilenet_v1_coco 、faster_rcnn_inception_v2_pets这两个我特意都配置完训练一遍),还是以ssd_mobilenet_v1_pets.config为例,从config目录下复制一份到设定位置后打开,需要我们配置的自上往下依次为:
TIM截图20190425093534.png
num_class 对应模型识别的对象分类数量 TIM截图20190425093623.png
batch_size对应每次喂的图片数据数目,根据电脑性能自己调整 TIM截图20190425094009.png
1.156 157这两行是选择原有模型(ssd_mobilenet_v1_coco)的节点作为我们自定义模型训练,可以直接删除掉
  1. num_steps训练步数设置
TIM截图20190425094115.png

分别对应训练数据tfrecord 和验证数据tfrecord路径如:

train_input_reader: {
  tf_record_input_reader {
    input_path: "D:\PyCharm\\raccoon_dataset_sample\\data\\train.record"
  }
  label_map_path: "D:\PyCharm\\raccoon_dataset_sample\\object_label_map.pbtxt"
}

eval_config: {
  num_examples: 4
  max_evals: 10
}

eval_input_reader: {
  tf_record_input_reader {
    input_path: "D:\PyCharm\\raccoon_dataset_sample\\data\\test.record"
  }
  label_map_path: "D:\PyCharm\\raccoon_dataset_sample\\object_label_map.pbtxt"
  shuffle: false
  num_readers: 1
}

同样建议绝对路径 + 双斜杠 避免歧义 报错

完整如下:

model {
  ssd {
    num_classes: 2
    box_coder {
      faster_rcnn_box_coder {
        y_scale: 10.0
        x_scale: 10.0
        height_scale: 5.0
        width_scale: 5.0
      }
    }
    matcher {
      argmax_matcher {
        matched_threshold: 0.5
        unmatched_threshold: 0.5
        ignore_thresholds: false
        negatives_lower_than_unmatched: true
        force_match_for_each_row: true
      }
    }
    similarity_calculator {
      iou_similarity {
      }
    }
    anchor_generator {
      ssd_anchor_generator {
        num_layers: 6
        min_scale: 0.2
        max_scale: 0.95
        aspect_ratios: 1.0
        aspect_ratios: 2.0
        aspect_ratios: 0.5
        aspect_ratios: 3.0
        aspect_ratios: 0.3333
      }
    }
    image_resizer {
      fixed_shape_resizer {
        height: 300
        width: 300
      }
    }
    box_predictor {
      convolutional_box_predictor {
        min_depth: 0
        max_depth: 0
        num_layers_before_predictor: 0
        use_dropout: false
        dropout_keep_probability: 0.8
        kernel_size: 1
        box_code_size: 4
        apply_sigmoid_to_scores: false
        conv_hyperparams {
          activation: RELU_6,
          regularizer {
            l2_regularizer {
              weight: 0.00004
            }
          }
          initializer {
            truncated_normal_initializer {
              stddev: 0.03
              mean: 0.0
            }
          }
          batch_norm {
            train: true,
            scale: true,
            center: true,
            decay: 0.9997,
            epsilon: 0.001,
          }
        }
      }
    }
    feature_extractor {
      type: 'ssd_mobilenet_v1'
      min_depth: 16
      depth_multiplier: 1.0
      conv_hyperparams {
        activation: RELU_6,
        regularizer {
          l2_regularizer {
            weight: 0.00004
          }
        }
        initializer {
          truncated_normal_initializer {
            stddev: 0.03
            mean: 0.0
          }
        }
        batch_norm {
          train: true,
          scale: true,
          center: true,
          decay: 0.9997,
          epsilon: 0.001,
        }
      }
    }
    loss {
      classification_loss {
        weighted_sigmoid {
          anchorwise_output: true
        }
      }
      localization_loss {
        weighted_smooth_l1 {
          anchorwise_output: true
        }
      }
      hard_example_miner {
        num_hard_examples: 3000
        iou_threshold: 0.99
        loss_type: CLASSIFICATION
        max_negatives_per_positive: 3
        min_negatives_per_image: 0
      }
      classification_weight: 1.0
      localization_weight: 1.0
    }
    normalize_loss_by_num_matches: true
    post_processing {
      batch_non_max_suppression {
        score_threshold: 1e-8
        iou_threshold: 0.6
        max_detections_per_class: 100
        max_total_detections: 100
      }
      score_converter: SIGMOID
    }
  }
}

train_config: {
  batch_size: 1
  optimizer {
    rms_prop_optimizer: {
      learning_rate: {
        exponential_decay_learning_rate {
          initial_learning_rate: 0.004
          decay_steps: 800720
          decay_factor: 0.95
        }
      }
      momentum_optimizer_value: 0.9
      decay: 0.9
      epsilon: 1.0
    }
  }
  num_steps: 200000
  data_augmentation_options {
    random_horizontal_flip {
    }
  }
  data_augmentation_options {
    ssd_random_crop {
    }
  }
}

train_input_reader: {
  tf_record_input_reader {
    input_path: "D:\PyCharm\\raccoon_dataset_sample\\data\\train.record"
  }
  label_map_path: "D:\PyCharm\\raccoon_dataset_sample\\object_label_map.pbtxt"
}

eval_config: {
  num_examples: 4
  max_evals: 10
}

eval_input_reader: {
  tf_record_input_reader {
    input_path: "D:\PyCharm\\raccoon_dataset_sample\\data\\test.record"
  }
  label_map_path: "D:\PyCharm\\raccoon_dataset_sample\\object_label_map.pbtxt"
  shuffle: false
  num_readers: 1
}

object_label_map.pbtxt文件则是训练的标签文件如:有几个写几个 id 递增

item{
 id:1
 name:'cigarette'
}
item{
 id:2
 name:'raccoon'
}

4.开始训练

新建一个train_dir保存训练过程数据
新建一个export_dir保存导出模型数据如下


TIM截图20190425103017.png

在****\models\research\object_detection 下 按shift + 右键打开命令窗口,输入指令执行

python legacy\\train.py --train_dir ***\\train_dir\ --pipeline_config_path *****\\ssd_mobilenet_v1_pets.config

若报错类型为

tensorflow.python.framework.errors_impl.NotFoundError: NewRandomAccessFile failed to Create/Open:  : ϵͳ\udcd5Ҳ\udcbb\udcb5\udcbdָ\udcb6\udca8\udcb5\udcc4·\udcbe\u
dcb6\udca1\udca3

检查路径问题,再来! 不出意外进入如下训练过程,开启漫长等待! 每隔10分钟会保存一次训练节点数据信息。


TIM截图20190425104725.png

5.导出模型

训练完成后在train_dir目录下文件信息,events文件供tensorboard可视化训练过程 ,model.ckpt-****.meta是我们需要操作的文件,****代表的数字也是你训练过程根据训练步数生成的。


TIM截图20190425110851.png

在****\models\research\object_detection 下 按shift + 右键打开命令窗口,输入指令执行

模型导出 pb文件
python export_inference_graph.py --input_type image_tensor --pipeline_config_path YOUR_PATH/ssd_mobilenet_v1_pets.config --trained_checkpoint_prefix YOUR_PATH/train_dir/model.ckpt-*****  --output_directory  YOUR_PATH/export_dir/
完成后export_dir目录文件 TIM截图20190425111832.png

6.模型调用(在官方基础上的优化)

先上代码:

# -*- coding: utf-8 -*-
"""
Created on Thu Jan 11 16:55:43 2018

@author: Xiang Guo
"""
# Imports
import time

start = time.time()
import numpy as np
import os
import sys
import tensorflow as tf
import cv2

from PIL import Image
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util

if tf.__version__ < '1.0.0':
    raise ImportError('Please upgrade your tensorflow installation to v1.4.* or later!')

os.chdir('D:\\ObjectDetection\\models\\research\\object_detection')

# Object detection imports

sys.path.append("..")
# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = 'F:\\mymodel\\frozen_inference_graph.pb'   # 修改成自己的

# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = os.path.join('F:\mymodel', 'object_label_map.pbtxt')  # 修改成自己的

NUM_CLASSES = 1 # 修改成自己的

# Load a (frozen) Tensorflow model into memory.
detection_graph = tf.Graph()

# Loading label map
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES,
                                                            use_display_name=True)
category_index = label_map_util.create_category_index(categories)


# Helper code
def load_image_into_numpy_array(image):
    (im_width, im_height) = image.size
    return np.array(image.getdata()).reshape(
        (im_height, im_width, 3)).astype(np.uint8)

# 相机实时视频 
def video_capture(image_tensor, detection_boxes, detection_scores, detection_classes, num_detections, sess):
    # 0是代表摄像头编号,只有一个的话默认为0
    capture = cv2.VideoCapture(0)
    i = 0
    while (True):
        ref, frame = capture.read()
        if ref:
            i = i + 1
            if i % 3 == 0:
                i = 0
                frame_show(image_tensor, detection_boxes, detection_scores, detection_classes, num_detections, frame,
                          sess)
              
            else:
                cv2.imshow("frame", frame)
            # 等待30ms显示图像,若过程中按“Esc”退出
            c = cv2.waitKey(30) & 0xff
            if c == 27:  # ESC 按键 对应键盘值 27
                capture.release()
                break
        else:
            break

# 视频帧实时预测
def init_ogject_detection():
    with detection_graph.as_default():
        with tf.Session(graph=detection_graph) as sess:
            od_graph_def = tf.GraphDef()
            with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
                serialized_graph = fid.read()
                od_graph_def.ParseFromString(serialized_graph)
                tf.import_graph_def(od_graph_def, name='')
            # Definite input and output Tensors for detection_graph
            image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
            # Each box represents a part of the image where a particular object was detected.
            detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
            # Each score represent how level of confidence for each of the objects.
            # Score is shown on the result image, together with the class label.
            detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
            detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
            num_detections = detection_graph.get_tensor_by_name('num_detections:0')
            video_capture(image_tensor, detection_boxes, detection_scores, detection_classes, num_detections, sess)

# 视频实时类预测
def frame_show(image_tensor, detection_boxes, detection_scores, detection_classes, num_detections, image_np, sess):
    starttime = time.time()
    image_np = Image.fromarray(cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB))
    image_np = load_image_into_numpy_array(image_np)
    # Expand dimensions since the model expects images to have shape: [1, None, None, 3]
    image_np_expanded = np.expand_dims(image_np, axis=0)
    # Actual detection.
    (boxes, scores, classes, num) = sess.run(
        [detection_boxes, detection_scores, detection_classes, num_detections],
        feed_dict={image_tensor: image_np_expanded})
    # Visualization of the results of a detection.
    vis_util.visualize_boxes_and_labels_on_image_array(
        image_np,
        np.squeeze(boxes),
        np.squeeze(classes).astype(np.int32),
        np.squeeze(scores),
        category_index,
        use_normalized_coordinates=True,
        line_thickness=8,
        min_score_thresh=.6)
    # write images
    # 保存识别结果图片
    print("------------use time ====> ", time.time() - starttime)
    image_np = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
    cv2.imshow("frame", image_np)



# 预测单张图片
def load_pic():
    i = 0
    starttime = time.time()
    i = i + 1
    with detection_graph.as_default():
        with tf.Session(graph=detection_graph) as sess:
            # Definite input and output Tensors for detection_graph
            image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
            # Each box represents a part of the image where a particular object was detected.
            detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
            # Each score represent how level of confidence for each of the objects.
            # Score is shown on the result image, together with the class label.
            detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
            detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
            num_detections = detection_graph.get_tensor_by_name('num_detections:0')
           
            image = Image.open("D:\PyCharm\Test213\\raccoon_dataset_sample\\smoken_528.jpg")
            # the array based representation of the image will be used later in order to prepare the
            # result image with boxes and labels on it.
            image_np = load_image_into_numpy_array(image)
            # Expand dimensions since the model expects images to have shape: [1, None, None, 3]
            image_np_expanded = np.expand_dims(image_np, axis=0)
            # Actual detection.
            (boxes, scores, classes, num) = sess.run(
                [detection_boxes, detection_scores, detection_classes, num_detections],
                feed_dict={image_tensor: image_np_expanded})
            # Visualization of the results of a detection.
            vis_util.visualize_boxes_and_labels_on_image_array(
                image_np,
                np.squeeze(boxes),
                np.squeeze(classes).astype(np.int32),
                np.squeeze(scores),
                category_index,
                use_normalized_coordinates=True,
                line_thickness=8)
            # write images
            # 保存识别结果图片
            print(str(i), "------------use time ====> ", time.time() - starttime)
            image_np = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
            cv2.imshow("image", image_np)
            cv2.waitKey(0)

# init_ogject_detection()  # 视频实时预测
# load_pic()  # 单张图片预测

init_ogject_detection() # 视频实时预测
load_pic() # 单张图片预测

def visualize_boxes_and_labels_on_image_array(
    image,
    boxes,
    classes,
    scores,
    category_index,
    instance_masks=None,
    instance_boundaries=None,
    keypoints=None,
    use_normalized_coordinates=False,
    max_boxes_to_draw=20,
    min_score_thresh=.5,
    agnostic_mode=False,
    line_thickness=4,
    groundtruth_box_visualization_color='black',
    skip_scores=False,
    skip_labels=False):
  """Overlay labeled boxes on an image with formatted scores and label names.

  This function groups boxes that correspond to the same location
  and creates a display string for each detection and overlays these
  on the image. Note that this function modifies the image in place, and returns
  that same image.

  Args:
    image: uint8 numpy array with shape (img_height, img_width, 3)
    boxes: a numpy array of shape [N, 4]
    classes: a numpy array of shape [N]. Note that class indices are 1-based,
      and match the keys in the label map.
    scores: a numpy array of shape [N] or None.  If scores=None, then
      this function assumes that the boxes to be plotted are groundtruth
      boxes and plot all boxes as black with no classes or scores.
    category_index: a dict containing category dictionaries (each holding
      category index `id` and category name `name`) keyed by category indices.
    instance_masks: a numpy array of shape [N, image_height, image_width] with
      values ranging between 0 and 1, can be None.
    instance_boundaries: a numpy array of shape [N, image_height, image_width]
      with values ranging between 0 and 1, can be None.
    keypoints: a numpy array of shape [N, num_keypoints, 2], can
      be None
    use_normalized_coordinates: whether boxes is to be interpreted as
      normalized coordinates or not.
    max_boxes_to_draw: maximum number of boxes to visualize.  If None, draw
      all boxes.
    min_score_thresh: minimum score threshold for a box to be visualized
    agnostic_mode: boolean (default: False) controlling whether to evaluate in
      class-agnostic mode or not.  This mode will display scores but ignore
      classes.
    line_thickness: integer (default: 4) controlling line width of the boxes.
    groundtruth_box_visualization_color: box color for visualizing groundtruth
      boxes
    skip_scores: whether to skip score when drawing a single detection
    skip_labels: whether to skip label when drawing a single detection

  Returns:
    uint8 numpy array with shape (img_height, img_width, 3) with overlaid boxes.
  """

这个函数原型见上,默认预测值50%的会再图片才显示出来,所以可以根据要求自定义:如
修改,

 vis_util.visualize_boxes_and_labels_on_image_array(
        image_np,
        np.squeeze(boxes),
        np.squeeze(classes).astype(np.int32),
        np.squeeze(scores),
        category_index,
        use_normalized_coordinates=True,
        line_thickness=8,
        min_score_thresh=.6)

后60%以上的才会显示框出来

优化处理主要针对视频实时类,将原来先读取视频,每帧都调用的with...with 逻辑
(思路来源于Stack Overflow上的一个问答)

with detection_graph.as_default():
  with tf.Session(graph=detection_graph) as sess:

更改为先加载模型后维持一个session,在开启视频帧预测,时间上由原来的一帧(640*480)耗时2秒左右缩减为现在的0.3秒--0.5秒,效率提升很明显!

欢迎测试优化!

相关文章

网友评论

    本文标题:基于Tensorflow的自定义对象识别检测模型的训练及视频实时

    本文链接:https://www.haomeiwen.com/subject/nkcngqtx.html