美文网首页
MobileNetV2-SSDLite代码分析-4 ssd

MobileNetV2-SSDLite代码分析-4 ssd

作者: 祁晏晏 | 来源:发表于2020-07-22 17:09 被阅读0次

    Github-pytorch-ssd
    vision/ssd
    ssd.py

    import torch.nn as nn
    import torch
    import numpy as np
    from typing import List, Tuple
    import torch.nn.functional as F
    
    from ..utils import box_utils
    from collections import namedtuple
    GraphPath = namedtuple("GraphPath", ['s0', 'name', 's1']) 
    

    namedtuple: 有字典功能的tuple

    def SeperableConv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, onnx_compatible=False):
        """Replace Conv2d with a depthwise Conv2d and Pointwise Conv2d.
        """
        ReLU = nn.ReLU if onnx_compatible else nn.ReLU6
        return Sequential(
            Conv2d(in_channels=in_channels, out_channels=in_channels, kernel_size=kernel_size,
                   groups=in_channels, stride=stride, padding=padding),
            BatchNorm2d(in_channels),
            ReLU(),
            Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1),
        )
    

    SSD_lite的lite就体现在上述这段代码中,它将SSD中的conv用深度可分离卷积来代替了.

    关于SSD的定义,先放一段mobilenetv2_ssd_lite.py中的代码在这里,可以大致了解每个参数的含义

    def create_mobilenetv2_ssd_lite(num_classes, width_mult=1.0, use_batch_norm=True, onnx_compatible=False, is_test=False):
        base_net = MobileNetV2(width_mult=width_mult, use_batch_norm=use_batch_norm,
                               onnx_compatible=onnx_compatible).features
    
        source_layer_indexes = [
            GraphPath(14, 'conv', 3),
            19,
        ]
        extras = ModuleList([
            InvertedResidual(1280, 512, stride=2, expand_ratio=0.2),
            InvertedResidual(512, 256, stride=2, expand_ratio=0.25),
            InvertedResidual(256, 256, stride=2, expand_ratio=0.5),
            InvertedResidual(256, 64, stride=2, expand_ratio=0.25)
        ])
    
        regression_headers = ModuleList([
            SeperableConv2d(in_channels=round(576 * width_mult), out_channels=6 * 4,
                            kernel_size=3, padding=1, onnx_compatible=False),
            SeperableConv2d(in_channels=1280, out_channels=6 * 4, kernel_size=3, padding=1, onnx_compatible=False),
            SeperableConv2d(in_channels=512, out_channels=6 * 4, kernel_size=3, padding=1, onnx_compatible=False),
            SeperableConv2d(in_channels=256, out_channels=6 * 4, kernel_size=3, padding=1, onnx_compatible=False),
            SeperableConv2d(in_channels=256, out_channels=6 * 4, kernel_size=3, padding=1, onnx_compatible=False),
            Conv2d(in_channels=64, out_channels=6 * 4, kernel_size=1),
        ])
    
        classification_headers = ModuleList([
            SeperableConv2d(in_channels=round(576 * width_mult), out_channels=6 * num_classes, kernel_size=3, padding=1),
            SeperableConv2d(in_channels=1280, out_channels=6 * num_classes, kernel_size=3, padding=1),
            SeperableConv2d(in_channels=512, out_channels=6 * num_classes, kernel_size=3, padding=1),
            SeperableConv2d(in_channels=256, out_channels=6 * num_classes, kernel_size=3, padding=1),
            SeperableConv2d(in_channels=256, out_channels=6 * num_classes, kernel_size=3, padding=1),
            Conv2d(in_channels=64, out_channels=6 * num_classes, kernel_size=1),
        ])
    
        return SSD(num_classes, base_net, source_layer_indexes,
                   extras, classification_headers, regression_headers, is_test=is_test, config=config)
    

     在上面的代码中, create_mobilenetv2_ssd_lite定义了source_layer_indexes, extras, regression_headers, classification_headers

    最后有个config属性, 这是预先定义好的关于生成anchor的设置, 包括: 图像尺寸、平均值、方差、iou阈值,anchor属性,和生成priors的函数。

    其中anchor属性:'SSDSpec', ['feature_map_size', 'shrinkage', 'box_sizes', 'aspect_ratios']

    来看看上面定义的四个东西具体是怎么在网络中使用的

    class SSD(nn.Module):
        def __init__(self, num_classes: int, base_net: nn.ModuleList, source_layer_indexes: List[int],
                     extras: nn.ModuleList, classification_headers: nn.ModuleList,
                     regression_headers: nn.ModuleList, is_test=False, config=None, device=None):
            """Compose a SSD model using the given components.
            """
            super(SSD, self).__init__()
    
            self.num_classes = num_classes
            self.base_net = base_net
            self.source_layer_indexes = source_layer_indexes
            self.extras = extras
            self.classification_headers = classification_headers
            self.regression_headers = regression_headers
            self.is_test = is_test
            self.config = config
    
            # register layers in source_layer_indexes by adding them to a module list
            self.source_layer_add_ons = nn.ModuleList([t[1] for t in source_layer_indexes if isinstance(t, tuple) and not isinstance(t, GraphPath)])
            if device:
                self.device = device
            else:
                self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
            if is_test:
                self.config = config
                self.priors = config.priors.to(self.device)
                
        def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
            confidences = []
            locations = []
            start_layer_index = 0
            header_index = 0
            for end_layer_index in self.source_layer_indexes:
                if isinstance(end_layer_index, GraphPath):
                    path = end_layer_index
                    end_layer_index = end_layer_index.s0
                    added_layer = None
                elif isinstance(end_layer_index, tuple):
                    added_layer = end_layer_index[1]
                    end_layer_index = end_layer_index[0]
                    path = None
                else:
                    added_layer = None
                    path = None
                for layer in self.base_net[start_layer_index: end_layer_index]:
                    x = layer(x)
                if added_layer:
                    y = added_layer(x)
                else:
                    y = x
                if path:
                    sub = getattr(self.base_net[end_layer_index], path.name)
                    for layer in sub[:path.s1]:
                        x = layer(x)
                    y = x
                    for layer in sub[path.s1:]:
                        x = layer(x)
                    end_layer_index += 1
                start_layer_index = end_layer_index
                confidence, location = self.compute_header(header_index, y)
                header_index += 1
                confidences.append(confidence)
                locations.append(location)
    
            for layer in self.base_net[end_layer_index:]:
                x = layer(x)
    
            for layer in self.extras:
                x = layer(x)
                confidence, location = self.compute_header(header_index, x)
                header_index += 1
                confidences.append(confidence)
                locations.append(location)
    
            confidences = torch.cat(confidences, 1)
            locations = torch.cat(locations, 1)
            
            if self.is_test:
                confidences = F.softmax(confidences, dim=2)
                boxes = box_utils.convert_locations_to_boxes(
                    locations, self.priors, self.config.center_variance, self.config.size_variance
                )
                boxes = box_utils.center_form_to_corner_form(boxes)
                return confidences, boxes
            else:
                return confidences, locations
    
        def compute_header(self, i, x):
            confidence = self.classification_headers[i](x)
            confidence = confidence.permute(0, 2, 3, 1).contiguous()
            confidence = confidence.view(confidence.size(0), -1, self.num_classes)
    
            location = self.regression_headers[i](x)
            location = location.permute(0, 2, 3, 1).contiguous()
            location = location.view(location.size(0), -1, 4)
    
    1. source_layer_add_ones

      GraphPath = namedtuple("GraphPath", ['s0', 'name', 's1'])
      source_layer_indexes = [
              GraphPath(14, 'conv', 3),
              19,
          ]
      self.source_layer_add_ons = nn.ModuleList([t[1] for t in source_layer_indexes if isinstance(t, tuple) and not isinstance(t, GraphPath)])
      # 这里实际sorce_layer_add_ons为空
      
    2. forward过程

      针对source_layer_indexes:

      • 找到start_layer_index和end_layer_index

        1. GraphPath(s0=14, name='conv', s1=3)

          path = GraphPath(s0=14, name='conv', s1=3),对应着我想在basenet的第14层找到名为conv的层的集合, 该集合中的第3层我想用来做分类与回归

          end_layer_index = 14

        2. 19

          则直接end_layer_index = 19

      • 针对base_net[start_layer_index, end_layer_index]中的每一个layer

        • x = layer(x)
        • 将最后一层的结果保存成y(y就是拿来做检测和回归的特征)
        • if path:
          • sub = mobilenet v2中第14层的conv(nn.module,包含了dwconv, relu, conv, relu等等)
          • sub[1: 3]:正常的正向传播
          • 将sub中的第3层的结果取出,保存为y
          • sub[3: ]:正常的正向传播
          • end_layer_index += 1
        • start_layer_index = end_layer_index
        • 根据y的结果去计算confidence和location, 并保存到结果中
        • header_index += 1

      将base_net[end_layer_index: ]中的层正常的正向传播

      针对extras:(这个就是相对mobilenet V2 额外添加的四个层用来做检测的)

      • x = layer(x)
      • 对每一个x计算confidence和location,将它放到结果中去
      • header_index += 1

      处理confidences和location,在第1维度做拼接

      如果不是测试阶段,直接返回confidences和location

      如果是测试阶段,还需要多做如下的处理:

      • 对confidences做softmax操作
      • 将location转成我们需要的boxes值
      • return confidences和boxes
    3. compute_header操作

      处理过程是这样的

      针对特征x,

      分别用两个卷积去得到confidence和location

      confidence需要permute(0,2,3,1).contiguous再进行view,使得符合(img, -1, classes)的格式

      location需要permute(0,2,3,1).contiguous再进行view,使得符合(img,-1, 4)的格式

    相关文章

      网友评论

          本文标题:MobileNetV2-SSDLite代码分析-4 ssd

          本文链接:https://www.haomeiwen.com/subject/nustlktx.html