1、使用concat做数据合并
1.1、横向合并
list_up = [text_left_up,text_right_up]
result_up = pd.concat(list_up,axis=1)
1.2、纵向合并
result = pd.concat([result_up,result_down]) #默认axis=0
2、使用group对数据进行聚合及运算
一图看懂group机制

分组求平均值
#以sex分组,输出Fare的值
df = text['Fare'].groupby(text['Sex'])
means = df.mean() #运算
--------------------------------------
Sex
female 233
male 109
Name: Survived, dtype: int64
分组统计个数
survived_pclass = text['Survived'].groupby(text['Pclass'])
---------------------------------------------
Pclass
1 136
2 87
3 119
Name: Survived, dtype: int64
联合分组
#以Pclass,Age分组,输出Fare的值
text.groupby(['Pclass','Age'])['Fare'].mean()
---------------------------------------------------------
Pclass Age
1 0.92 151.5500
2.00 151.5500
4.00 81.8583
11.00 120.0000
14.00 120.0000
...
3 61.00 6.2375
63.00 9.5875
65.00 7.7500
70.50 7.7500
74.00 7.7750
Name: Fare, Length: 182, dtype: float64
merge合并
a1= text['Fare'].groupby(text['Sex']).mean()
a2= text['Survived'].groupby(text['Sex']).sum()
result = pd.merge(a1,a2,on='Sex')
-----------------------------------------------
Fare Survived
Sex
female 44.479818 233
male 25.523893 109
网友评论