美文网首页
卷积神经网络

卷积神经网络

作者: 浩宇Harry | 来源:发表于2018-07-14 10:13 被阅读0次

    卷积神经网络

    • 如果采用全连接前馈网络来处理图像时,会存在以下问题,
    • 第一 参数太多,在图像处理时,每个像素点都是一个参数,因此,若采用全连接前馈网络,仅仅第一个隐藏层,每个神经元到输出层都有1001003 个互相独立连接,每个连接都对应一个权重参数,这会导致模型训练效率非常低,也很容易出现过拟合(不必要参数太多)
    • 第二 局部不变特征,自然图像中的物体都有局部不变性特征,比如在尺度缩放,平移,旋转等操作不影响其语义信息,而全连接前馈神经网络,很难提取这些局部不变特征,比如缩放手,的50503的图像,很难识别出和1001003的 描述的是同一个物体

    目前卷积神经网络

    一般由卷积层,汇聚层,和全连接层交叉堆叠而成,使用反向传播算法进行训练(反向传播,再重新看一下)
    卷积神经网络有三个结构上的特性:局部连接,权重共享以及子采样

    滤波器filter 卷积核convolution kernel
    局部连接,其实就是根据时间,权重递减 最后为0 参数就传播不到远处了

    • 二维卷积中,滤波器也分为好几种
    • 均值滤波
    • 高斯滤波
      还有一些,可以提取边缘特征的滤波器 等等

    局部连接 乘以 滤波器 得特征映射


    image.png

    互相关,是一个衡量两个序列相关性的函数,
    互相关和卷积的区别在于 卷积核仅仅是否进行翻转,因此互相关也可以称为 不翻转卷积
    使用卷积 是为了进行特征抽取,卷积核 是否进行翻转和其特征抽取的能力无关。
    当卷积核是可以学习的参数,卷积和互相关是等价的,因此,其实两者差不多。

    image.png

    汇聚层

    • 汇聚层也叫做子采样层,其作用是进行特征选择,降低特征数量,并从而减少,参数数量
      汇聚层虽然可以显著提高网络中连接的数量,但特征映射组中但神经元的个数并没有显著减少,如果后面接一个分类器,分类器的输入维数依然很高,很容易出现过拟合,为了解决这个问题,可以在卷积层之后加一个汇聚层,从而降低特征维数,避免过拟合


      image.png
    • 常用的汇聚函数,有 最大汇聚 和 平均汇聚 两者


      image.png
    • 卷积神经网络中,主要有两种不同功能的神经层:卷积层和汇聚层
      而参数多为卷积核(滤波器)和偏置,而我们进行算法优化,无非就是修改超参数,因此只需要计算卷积层中参数的梯度。

    Tips:P是代表特征映射

    相关文章

      网友评论

          本文标题:卷积神经网络

          本文链接:https://www.haomeiwen.com/subject/oellpftx.html