美文网首页
ConcurrentLinkedQueue源码解读

ConcurrentLinkedQueue源码解读

作者: 铁甲依然在_978f | 来源:发表于2018-01-28 08:16 被阅读0次

    ConcurrentLinkedQueue的实现原理分析
    ConcurrentLinkedQueue介绍
    ConcurrentLinkedQueue是一个基于链接节点的无界线程安全队列,它采用先进先出的规则对节点进行排序,当我们添加一个元素的时候,它会添加到队列的尾部,当我们获取一个元素时,它会返回队列头部的元素。此实现使用了一个基于所述的高效非阻塞算法在简单、快速、实用的非阻塞,阻塞并发队列算法。

    ConcurrentLinkedQueue内部属性及构造方法

    private static class Node<E> {
        volatile E item;
        volatile Node<E> next;
    
        /**
         * Constructs a new node.  Uses relaxed write because item can
         * only be seen after publication via casNext.
         */
        Node(E item) {
            UNSAFE.putObject(this, itemOffset, item);
        }
    
        boolean casItem(E cmp, E val) {
            return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
        }
    
        void lazySetNext(Node<E> val) {
            UNSAFE.putOrderedObject(this, nextOffset, val);
        }
    
        boolean casNext(Node<E> cmp, Node<E> val) {
            return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
        }
    
        // Unsafe mechanics
    
        private static final sun.misc.Unsafe UNSAFE;
        private static final long itemOffset;
        private static final long nextOffset;
    
        static {
            try {
                UNSAFE = sun.misc.Unsafe.getUnsafe();
                Class<?> k = Node.class;
                itemOffset = UNSAFE.objectFieldOffset
                    (k.getDeclaredField("item"));
                nextOffset = UNSAFE.objectFieldOffset
                    (k.getDeclaredField("next"));
            } catch (Exception e) {
                throw new Error(e);
            }
        }
    }
    
    
    private transient volatile Node<E> head;
    
    private transient volatile Node<E> tail;
    
    
    public ConcurrentLinkedQueue() {
            head = tail = new Node<E>(null);
        }
    
    public ConcurrentLinkedQueue(Collection<? extends E> c) {
        Node<E> h = null, t = null;
        for (E e : c) {
            checkNotNull(e);
            Node<E> newNode = new Node<E>(e);
            if (h == null)
                h = t = newNode;
            else {
                t.lazySetNext(newNode);
                t = newNode;
            }
        }
        if (h == null)
            h = t = new Node<E>(null);
        head = h;
        tail = t;
    }
    

    入队列操作 offer()

    public boolean offer(E e) {
        checkNotNull(e);
        final Node<E> newNode = new Node<E>(e);
    
        for (Node<E> t = tail, p = t;;) {
            Node<E> q = p.next;
            if (q == null) {
                // p is last node
                if (p.casNext(null, newNode)) {
                    // Successful CAS is the linearization point
                    // for e to become an element of this queue,
                    // and for newNode to become "live".
                    if (p != t) // hop two nodes at a time
                        casTail(t, newNode);  // Failure is OK.
                    return true;
                }
                // Lost CAS race to another thread; re-read next
            }
            else if (p == q)
                // We have fallen off list.  If tail is unchanged, it
                // will also be off-list, in which case we need to
                // jump to head, from which all live nodes are always
                // reachable.  Else the new tail is a better bet.
                p = (t != (t = tail)) ? t : head;
            else
                // Check for tail updates after two hops.
                p = (p != t && t != (t = tail)) ? t : q;
        }
    }
    

    从源代码角度来看整个入队过程主要做二件事情。第一是定位出尾节点,第二是使用CAS算法能将入队节点设置成尾节点的next节点,如不成功则重试。
    第一步定位尾节点。tail节点并不总是尾节点,所以每次入队都必须先通过tail节点来找到尾节点,尾节点可能就是tail节点,也可能是tail节点的next节点。代码中循环体中的第一个if就是判断tail是否有next节点,有则表示next节点可能是尾节点。获取tail节点的next节点需要注意的是p节点等于p的next节点的情况,只有一种可能就是p节点和p的next节点都等于空,表示这个队列刚初始化,正准备添加第一次节点,所以需要返回head节点。

    第二步设置入队节点为尾节点。 p.casNext(null, n)方法用于将入队节点设置为当前队列尾节点的next节点,p如果是null表示p是当前队列的尾节点,如果不为null表示有其他线程更新了尾节点,则需要重新获取当前队列的尾节点。

    出队列操作 poll()

    public E poll() {
        restartFromHead:
        for (;;) {
            for (Node<E> h = head, p = h, q;;) {
                E item = p.item;
                 // 如果p节点的元素不为空,使用CAS设置p节点引用的元素为null,如果成功则返回p节点的元素。
                if (item != null && p.casItem(item, null)) {
                    // Successful CAS is the linearization point
                    // for item to be removed from this queue.
                    if (p != h) // hop two nodes at a time
                        updateHead(h, ((q = p.next) != null) ? q : p);
                    return item;
                }
                else if ((q = p.next) == null) {
                    updateHead(h, p);
                    return null;
                }
                else if (p == q)
                    continue restartFromHead;
                else
                    p = q;
            }
        }
    }
    

    首先获取头节点的元素,然后判断头节点元素是否为空,如果为空,表示另外一个线程已经进行了一次出队操作将该节点的元素取走,如果不为空,则使用CAS的方式将头节点的引用设置成null,如果CAS成功,则直接返回头节点的元素,如果不成功,表示另外一个线程已经进行了一次出队操作更新了head节点,导致元素发生了变化,需要重新获取头节点。

    相关文章

      网友评论

          本文标题:ConcurrentLinkedQueue源码解读

          本文链接:https://www.haomeiwen.com/subject/okdaaxtx.html