练习:Pearson相关系数与数据分布
import numpy as np
from scipy import stats
import matplotlib as mpl
import matplotlib.pyplot as plt
import warnings
mpl.rcParams['axes.unicode_minus'] = False
mpl.rcParams['font.sans-serif'] = 'SimHei'
def calc_pearson(x, y):
std1 = np.std(x)
# np.sqrt(np.mean(x**2) - np.mean(x)**2)
std2 = np.std(y)
cov = np.cov(x, y, bias=True)[0,1]
return cov / (std1 * std2)
def intro():
N = 10
x = np.random.rand(N)
y = 2 * x + np.random.randn(N) * 0.1
print(x)
print(y)
print('系统计算:', stats.pearsonr(x, y)[0])
print('手动计算:', calc_pearson(x, y))
def rotate(x, y, theta=45):
data = np.vstack((x, y))
# print data
mu = np.mean(data, axis=1)
mu = mu.reshape((-1, 1))
# print mu
data -= mu
# print data
theta *= (np.pi / 180)
c = np.cos(theta)
s = np.sin(theta)
m = np.array(((c, -s), (s, c)))
return m.dot(data) + mu
def pearson(x, y, tip):
clrs = list('rgbmycrgbmycrgbmycrgbmyc')
plt.figure(figsize=(10, 8), facecolor='w')
for i, theta in enumerate(np.linspace(0, 90, 6)):
xr, yr = rotate(x, y, theta)
p = stats.pearsonr(xr, yr)[0]
# print calc_pearson(xr, yr)
print('旋转角度:', theta, 'Pearson相关系数:', p)
str = '相关系数:%.3f' % p
plt.scatter(xr, yr, s=40, alpha=0.9, linewidths=0.5, c=clrs[i], marker='o', label=str)
plt.legend(loc='upper left', shadow=True)
plt.xlabel('X')
plt.ylabel('Y')
plt.title('Pearson相关系数与数据分布:%s' % tip, fontsize=18)
plt.grid(b=True)
plt.show()
if __name__ == '__main__':
# warnings.filterwarnings(action='ignore', category=RuntimeWarning)
np.random.seed(0)
intro()
N = 1000
tip = '一次函数关系'
x = np.random.rand(N)
y = np.zeros(N) + np.random.randn(N)*0.001
tip = u'二次函数关系'
x = np.random.rand(N)
y = x ** 2 #+ np.random.randn(N)*0.002
tip = u'正切关系'
x = np.random.rand(N) * 1.4
y = np.tan(x)
tip = u'二次函数关系'
x = np.linspace(-1, 1, 101)
y = x ** 2
tip = u'椭圆'
x, y = np.random.rand(2, N) * 60 - 30
y /= 5
idx = (x**2 / 900 + y**2 / 36 < 1)
x = x[idx]
y = y[idx]
pearson(x, y, tip)
网友评论