美文网首页
scikit-learn示例

scikit-learn示例

作者: 幼稚园靓仔 | 来源:发表于2022-04-19 15:32 被阅读0次

    scikit-learn示例

    from joblib import parallel_backend, dump, load
    import data.selectData as selectData
    import time
    import util_job.util as util
    # from sklearn import svm
    from sklearn.neural_network import MLPClassifier
    # from sklearn.tree import DecisionTreeClassifier
    # from sklearn.linear_model import LogisticRegression
    from sklearn.svm import LinearSVC
    import numpy as np
    import data.insertData as insertData
    from sklearn.metrics import accuracy_score
    from sklearn.model_selection import cross_val_score
    from sklearn.model_selection import cross_val_predict
    from sklearn.preprocessing import StandardScaler
    
    
    # 预测
    def run_sklearn(start_time, end_time, x, y):
        开始时间 = time.time()
    
        barData = selectData.show_10s_between_time_new(start_time, end_time)
        barData = util.sort_dataFrame(barData)
        barData.replace([np.inf, -np.inf, "", np.nan], 0, inplace=True)
    
        # x_train = np.array(barData[[x]])
        x_train = np.array(barData[x])
    
        # scaler = StandardScaler() 标准化数据,不准
        # scaler.fit(x_train)
        # x_train = scaler.transform(x_train)
    
        y_train = np.array(barData[y])
        print('开始')
        加载数据时间 = time.time()
        print('加载数据时间:', round((加载数据时间 - 开始时间) / 60, 2), '分钟')
    
        # 实例化 模型
        # clf = svm.SVC(C=0.6, kernel='rbf', gamma=0.001)
        # clf = svm.SVC()  # 相似度:71.75
        # clf = DecisionTreeClassifier()  # 相似度:61.48
        # clf = LogisticRegression()  # 相似度: 71.91
    
        clf = LinearSVC(max_iter=100000)  # 相似度:       max_iter=1000000
        # clf = MLPClassifier()  # 相似度:正 71.73 71.83  负 72.0129  max_iter=10000
    
        with parallel_backend('threading', n_jobs=-1):
            # 放入 数据学习
            clf.fit(x_train, y_train)
        print('训练完成!====', clf)
        print("LinearSVC 。 决策函数中的常数 intercept : ", clf.intercept_, " 。 唯一的类标签 classes_ : ", clf.classes_,
              " 。 所有类的最大迭代次数:n_iter_ : ", clf.n_iter_, " 。 系数:", clf.coef_)
    
        训练完成时间 = time.time()
        print('训练时间:', round((训练完成时间 - 加载数据时间) / 60, 2), '分钟')
    
        # 下载模型,持久化模型
        dump(clf, 'scikit_model.joblib')
    
        print('训练总时间:', round((训练完成时间 - 开始时间) / 60, 2), '分钟')
        return clf, x_train, y_train
    
    
    # 交叉准确率
    def scores(clf, x_train, y_train):
        开始时间 = time.time()
    
        with parallel_backend(backend='threading', n_jobs=-1):
            scores = cross_val_score(clf, x_train, y_train, cv=10)  # .astype('int')
            print('scores准确率:', scores)
            print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))
            y_pred = cross_val_predict(clf, x_train, y_train, cv=10)
            print('y_pred准确率:', y_pred)
    
        结束时间 = time.time()
        print('交叉准确率时间:', round((开始时间 - 结束时间) / 60, 2), '分钟')
    
    # 测试
    def run_test(features_start_time, features_end_time, x, y):
        开始时间 = time.time()
    
        # 加载模型
        clf = load('scikit_model.joblib')
    
        # 加载测试数据
        features_barData = selectData.show_10s_between_time_new(features_start_time, features_end_time)
        features_barData = util.sort_dataFrame(features_barData)
        features = np.array(features_barData[x])
        加载数据时间 = time.time()
        print('加载测试数据时间:', round((加载数据时间 - 开始时间) / 60, 2), '分钟')
        # features = scaler.transform(features) 标准化数据
    
        with parallel_backend('threading', n_jobs=-1):
            # 预测 数据
            features_data = clf.predict(features)
    
        features_barData['未来价格走势'] = features_data
        insertData.run_features(features_barData)
    
        预测时间 = time.time()
        print('预测时间:', round((预测时间 - 加载数据时间) / 60, 2), '分钟')
    
        # 准确率
        acc = accuracy_score(np.array(features_barData[y]), features_data)
        time_end = time.time()
        print('计算准确率时间:', round((time_end - 预测时间) / 60, 2), '分钟')
        print('准确率:', acc)
    
    
    def run_corr():
        barData = selectData.show_features_bar()
        corrr = barData['未来价格走势'].corr(barData['正价格走势'])
        print('相关性:', corrr)
    
    
    def run():
        sk_start_time = "2018-01-01 09:00"
        sk_end_time = "2022-03-01 24:00"
    
        features_start_time = "2022-03-03 09:00"
        features_end_time = "2029-12-01 24:00"
    
        # todo 加上 价格趋势
        # x="买多_1r", "卖空_1r", "平多_1r", "平空_1r", "买多_5r", "卖空_5r", "平多_5r", "平空_5r", "买多_10r", "卖空_10r", "平多_10r", "平空_10r",  "买多_30r", "卖空_30r", "平多_30r", "平空_30r", "ask_1min", "bid_1min", "vr_1", "kdj_k_list", "kdj_d_list", "kdj_k-d", "diff", "dea","macd"
        x = ["买多_1r", "卖空_1r", "平多_1r", "平空_1r", "ask_1min", "bid_1min", "vr_1", "kdj_k_list", "kdj_d_list", "kdj_k-d",
             "diff",
             "dea", "macd"]
        # x = ["买多成交量", "卖空成交量", "平多成交量", "平空成交量", "ask_v_sum", "bid_v_sum", "volume_sum", "kdj_k_list", "kdj_d_list", "kdj_k-d", "diff", "dea", "macd"]  ,"hours","分钟"
        # x = ["ask_v_sum", "bid_v_sum", "volume_sum", "kdj_k_list", "kdj_d_list", "kdj_k-d", "diff", "dea", "macd"]
        y = "正价格走势"
    
        # 预测
        clf, x_train, y_train = run_sklearn(sk_start_time, sk_end_time, x, y)
        # 测试
        run_test(features_start_time, features_end_time, x, y)
        # 准确率
        scores(clf, x_train, y_train)
        # 相关性
        run_corr()
    
    

    相关文章

      网友评论

          本文标题:scikit-learn示例

          本文链接:https://www.haomeiwen.com/subject/oxwsertx.html