美文网首页ELK stackJava 杂谈FS全栈计划
Elasticsearch Java Rest Client 上

Elasticsearch Java Rest Client 上

作者: MaxZing | 来源:发表于2018-07-18 16:13 被阅读3次

    High Level Rest Clent到现在还不是完成版。我试了一下,5.6版本的RestHighLevelClient就这么些API


    包含了基本的增删改查和批量操作

    我翻了一下官方文档,凉凉。确实像官方文档说的那样,需要完善。虽然是High Level的Client,但是东西少的可怜。
    增(index)删(delete)改(update)查(get)操作都是和Index,type,id严格绑定的。
    不能跨Index操作

    目前几乎所有的High Level Rest Clent的中文介绍全部是照搬ES的文档啊。我懒得抄,而且我司用的Elasticsearch 5.6


    API少的可怜

    明显特性比版本6少了很多。所以,我倒是想填这个坑,但是太大了。还是拉倒吧。强烈建议直接去翻官方文档,这个API版本不同版本的差别很大,一定去看自己使用的版本!现有的中文博客参考价值有限。包括本篇。

    0x1 基本增删改查

    • 第一步创建高级Client
    RestClient restClient = RestClient
                .builder(new HttpHost("localhost", 9200, "http"))
                .build();
    
    RestHighLevelClient highLevelClient = new RestHighLevelClient(restClient);
    
    • 一次演示增删改查
    //增, source 里对象创建方式可以是JSON字符串,或者Map,或者XContentBuilder 对象
    IndexRequest indexRequest = new IndexRequest("指定index", "指定type", "指定ID") .source(builder);
    highLevelClient.index(indexRequest);
    
    //删
    DeleteRequest deleteRequest = new DeleteRequest("指定index", "指定type", "指定ID");
    highLevelClient.delete(deleteRequest);
    
    //改, source 里对象创建方式可以是JSON字符串,或者Map,或者XContentBuilder 对象
    UpdateRequest updateRequest = new UpdateRequest("指定index", "指定type", "指定ID").doc(builder);
    highLevelClient.update(updateRequest);
    
    //查
    GetRequest getRequest = new GetRequest("指定index", "指定type", "指定ID");
    highLevelClient.get(getRequest);
    
    
    • 以上四个方法都有一个***Async的方法是异步回调的,只需添加ActionListener对象即可
    • Get查询不是唯一的查询方法,还有SearchRequest等, 但是这个GetRequest只支持单Index操作
    • Get操作支持限定查询的字段,传入fetchSourceContext对象即可
    • Update 操作演示的并不是全量替换,而是和现有文档作合并,除了doc操作还有使用Groovy script操作。
    • upsert类似update操作,不过如果文档不存在会作为新的doc存入ES

    0x2 Bulk批量操作

    其实就是把一大堆IndexRequest, UpdateRequest, DeleteRequest操作放在一起。
    所以缺点就是必须指定Index,否则操作没戏。
    简单示例

    BulkRequest request = new BulkRequest();
    request.add(new IndexRequest("指定index", "指定type", "指定ID_1").source(XContentType.JSON,"field", "foo"));
    request.add(new DeleteRequest("指定index", "指定type", "指定ID_2"));
    request.add(new UpdateRequest("指定index", "指定type", "指定ID_3") .doc(XContentType.JSON,"other", "test"));
    
    BulkResponse bulkResponse = client.bulk(request);
    
    for (BulkItemResponse bulkItemResponse : bulkResponse) {
        if (bulkItemResponse.isFailed()) {
            BulkItemResponse.Failure failure = bulkItemResponse.getFailure();
            continue;
        }
        DocWriteResponse itemResponse = bulkItemResponse.getResponse();
        if (bulkItemResponse.getOpType() == DocWriteRequest.OpType.INDEX
                || bulkItemResponse.getOpType() == DocWriteRequest.OpType.CREATE) {
            IndexResponse indexResponse = (IndexResponse) itemResponse;
        } else if (bulkItemResponse.getOpType() == DocWriteRequest.OpType.UPDATE) {
            UpdateResponse updateResponse = (UpdateResponse) itemResponse;
        } else if (bulkItemResponse.getOpType() == DocWriteRequest.OpType.DELETE) {
            DeleteResponse deleteResponse = (DeleteResponse) itemResponse;
        }
    }
    
    

    0x3 SearchRequest高级查询

    支持多文档查询、聚合操作。可以完全取代GetRequest。

    // 创建
    SearchRequest searchRequest = new SearchRequest(); 
    SearchSourceBuilder builder = new SearchSourceBuilder(); 
    searchSourceBuilder.query(xxxQuery); 
    searchRequest.source(builder);
    

    可以在创建的时候指定index,SearchRequest searchRequest = new SearchRequest("some_index*");,支持带*号的模糊匹配

    当然,这并不是最厉害的地方,最NB的地方是,支持QueryBuilder,兼容之前TransportClient的代码

    • 我自己写的跨Index模糊查询
            SearchRequest searchRequest = new SearchRequest("gdp_tops*");
            SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
            sourceBuilder.query(QueryBuilders.termQuery("city", "北京市"));
            sourceBuilder.timeout(new TimeValue(60, TimeUnit.SECONDS));
    
            searchRequest.source(sourceBuilder);
            try {
                SearchResponse response = highLevelClient.search(searchRequest);
                Arrays.stream(response.getHits().getHits())
                        .forEach(i -> {
                            System.out.println(i.getIndex());
                            System.out.println(i.getSource());
                            System.out.println(i.getType());
    
                        });
                System.out.println(response.getHits().totalHits);
            } catch (IOException e) {
                e.printStackTrace();
            }
    
    • 官方给出的聚合查询
    SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
    TermsAggregationBuilder aggregation = AggregationBuilders.terms("by_company")
            .field("company.keyword");
    aggregation.subAggregation(AggregationBuilders.avg("average_age")
            .field("age"));
    searchSourceBuilder.aggregation(aggregation);
    
    • 当然还支持异步查询
      官方示例
    client.searchAsync(searchRequest, new ActionListener<SearchResponse>() {
        @Override
        public void onResponse(SearchResponse searchResponse) {
            
        }
    
        @Override
        public void onFailure(Exception e) {
            
        }
    });
    
    • 查询结果处理
      查询结束后会得到一个SearchResponse对象,可以拿到查询状态,消耗时间,查询到的总条目数等参数,具体结果操作
    SearchHit[] searchHits = hits.getHits();
    for (SearchHit hit : searchHits) {
    // 结果的Index
        String index = hit.getIndex();
    // 结果的type
        String type = hit.getType();
    // 结果的ID
        String id = hit.getId();
    // 结果的评分
        float score = hit.getScore();
    // 查询的结果 JSON字符串形式
        String sourceAsString = hit.getSourceAsString();
    // 查询的结果 Map的形式
        Map<String, Object> sourceAsMap = hit.getSourceAsMap();
    // Document的title
        String documentTitle = (String) sourceAsMap.get("title");
    // 结果中的某个List
        List<Object> users = (List<Object>) sourceAsMap.get("user");
    // 结果中的某个Map
        Map<String, Object> innerObject = (Map<String, Object>) sourceAsMap.get("innerObject");
    }
    
    • 聚合查询
      前面演示的是正常查询,聚合查询官方文档也有展示
    SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
    TermsAggregationBuilder aggregation = AggregationBuilders.terms("by_company")
            .field("company.keyword");
    aggregation.subAggregation(AggregationBuilders.avg("average_age")
            .field("age"));
    searchSourceBuilder.aggregation(aggregation);
    

    和query查询一样,searchSourceBuilder使用aggregation()方法即可
    查询到的结果处理也跟普通查询类似,处理一下Bucket就可以展示到接口了

    Aggregations aggregations = searchResponse.getAggregations();
    Terms byCompanyAggregation = aggregations.get("by_company"); 
    Bucket elasticBucket = byCompanyAggregation.getBucketByKey("Elastic"); 
    Avg averageAge = elasticBucket.getAggregations().get("average_age"); 
    double avg = averageAge.getValue();
    

    0x4 分页和滚动搜索

    有时候结果需要分页查询,推荐使用searchSourceBuilder

    sourceBuilder.from(0); 
    sourceBuilder.size(5);
    

    有时候需要查询的数据太多,可以考虑使用SearchRequest.scroll()方法拿到scrollId;之后再使用SearchScrollRequest
    其用法如下:

    SearchRequest searchRequest = new SearchRequest("posts");
    SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
    searchSourceBuilder.query(matchQuery("title", "Elasticsearch"));
    searchSourceBuilder.size(size); 
    searchRequest.source(searchSourceBuilder);
    searchRequest.scroll(TimeValue.timeValueMinutes(1L)); 
    SearchResponse searchResponse = client.search(searchRequest);
    String scrollId = searchResponse.getScrollId(); 
    SearchScrollRequest scrollRequest = new SearchScrollRequest(scrollId); 
    scrollRequest.scroll(TimeValue.timeValueSeconds(30));
    SearchResponse searchScrollResponse = client.searchScroll(scrollRequest);
    scrollId = searchScrollResponse.getScrollId();  
    hits = searchScrollResponse.getHits(); 
    assertEquals(3, hits.getTotalHits());
    assertEquals(1, hits.getHits().length);
    assertNotNull(scrollId);
    

    Scroll查询的使用场景是密集且前后有关联的查询。如果只是一般的分页,可以使用size from来处理

    需要了解基础的,请查看:Elasticsearch Java Rest Client 上手指南(上)

    转载请注明出处:https://micorochio.github.io/2018/07/22/elasticsearch_rest_high_level_client/
    如有错误,请不吝指正。谢谢
    我的博客:https://micorochio.github.io/

    相关文章

      网友评论

        本文标题:Elasticsearch Java Rest Client 上

        本文链接:https://www.haomeiwen.com/subject/oykopftx.html