2019-10-10 kNN近邻算法

作者: lqzzz | 来源:发表于2019-10-10 21:17 被阅读0次

    kNN近邻算法

    算法原理

    样本点的特性与该邻居点的特性类似,可以简单理解为“物以类聚”。因此可以使用目标点的多个邻近点的特性表示当前点的特性。

    k近邻算法是非常特殊的,可以被认为是没有模型的算法,为了和其他算法统一,可以认为训练数据集就是模型本身。

    KNN分类算法:“投票法”,选择这k 个样本中出现最多的类别标记作为预测结果。

    KNN回归算法:“平均法”,将这k 个样本的实值输出标记的平均值作为预测结果。

    欧拉距离公式

    欧拉距离公式
    化简公式

    KNN算法的核心要素

    1.K值的选择:K是超参(需要给定),K值过小容易导致过拟合(比如噪音点的数据会对结果造成影响),K值过大训练误差会增大,同时会使模型变得简单,容易导致欠拟合。

    2.距离的度量:采用欧式距离。

    3.决策规则:在分类模型中,主要使用多数表决法或者加权多数表决法;在回归模型中,主要使用平均值法或者加权平均值法。(基于距离远近进行加权,,距离越近的样本权重越大.)。

    kNN算法源码

    import numpy as np
    from math import sqrt
    from collections import Counter
    from sklearn.metrics import accuracy_score
    
    class KNNClassifier:
    
        def __init__(self, k):
            """初始化kNN分类器"""
            assert k >= 1, "k must be valid"
            self.k = k
            self._X_train = None
            self._y_train = None
    
        def fit(self, X_train, y_train):
            """根据训练数据集X_train和y_train训练kNN分类器"""
            assert X_train.shape[0] == y_train.shape[0], \
                "the size of X_train must be equal to the size of y_train"
            assert self.k <= X_train.shape[0], \
                "the size of X_train must be at least k."
    
            self._X_train = X_train
            self._y_train = y_train
            return self
    
        def predict(self, X_predict):
            """给定待预测数据集X_predict,返回表示X_predict的结果向量"""
            assert self._X_train is not None and self._y_train is not None, \
                    "must fit before predict!"
            assert X_predict.shape[1] == self._X_train.shape[1], \
                    "the feature number of X_predict must be equal to X_train"
    
            y_predict = [self._predict(x) for x in X_predict]
            return np.array(y_predict)
    
        def _predict(self, x):
            """给定单个待预测数据x,返回x的预测结果值"""
            assert x.shape[0] == self._X_train.shape[1], \
                "the feature number of x must be equal to X_train"
    
            distances = [sqrt(np.sum((x_train - x) ** 2))
                         for x_train in self._X_train]
            nearest = np.argsort(distances)
    
            topK_y = [self._y_train[i] for i in nearest[:self.k]]
            votes = Counter(topK_y)
    
            return votes.most_common(1)[0][0]
    
        def score(self, X_test, y_test):
            """根据测试数据集 X_test 和 y_test 确定当前模型的准确度"""
    
            y_predict = self.predict(X_test)
            return accuracy_score(y_test, y_predict)
    
        def __repr__(self):
            return "KNN(k=%d)" % self.k
    

    kNN原生代码

    import numpy as np
    from math import sqrt
    import matplotlib.pyplot as plt
    #数据处理
    raw_data_X = [[3.393533211, 2.331273381],
                  [3.110073483, 1.781539638],
                  [1.343808831, 3.368360954],
                  [3.582294042, 4.679179110],
                  [2.280362439, 2.866990263],
                  [7.423436942, 4.696522875],
                  [5.745051997, 3.533989803],
                  [9.172168622, 2.511101045],
                  [7.792783481, 3.424088941],
                  [7.939820817, 0.791637231]
                 ]
    raw_data_y = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]
    x = np.array([8.093607318, 3.365731514])  #要判断的新的点归于属于0还是1
    X_train = np.array(raw_data_X)
    y_train = np.array(raw_data_y)
    #近邻算法:计算距离
    distances = []
    for x_train in X_train:
        d = sqrt(np.sum((x_train-x)**2))  #求欧拉距离的公式
        distances.append(d)
    
    print(distances)
    nearest = np.argsort(distances)#按索引排序,默认从小到大
    print(nearest)
    k = 6  #knn算法:取6
    num = [y_train[neighbors] for neighbors in nearest[:k]]
    print(num)
    from collections import Counter
    votes = Counter(num)
    print(votes.most_common(1)[0][0])
    
    plt.scatter(X_train[y_train==0,0],X_train[y_train==0,1],color='g')
    plt.scatter(X_train[y_train==1,0],X_train[y_train==1,1],color='r')
    plt.scatter(x[0],x[1],color='b')
    plt.show()
    

    相关文章

      网友评论

        本文标题:2019-10-10 kNN近邻算法

        本文链接:https://www.haomeiwen.com/subject/oztzpctx.html