美文网首页
tensorflow实战-10.word2vec

tensorflow实战-10.word2vec

作者: 科幻不再未来 | 来源:发表于2017-02-27 11:27 被阅读0次

    源码目录:

    tensorflow/examples/tutorials/word2vec/word2vec_basic.py

    详细过程

    1.下载并载入数据

    url = 'http://mattmahoney.net/dc/'
    def maybe_download(filename, expected_bytes): 
        # 判断下下载过的就不下了
        if not os.path.exists(filename):    
            filename, _ = urllib.request.urlretrieve(url + filename, filename)  
        statinfo = os.stat(filename)  
        if statinfo.st_size == expected_bytes:    
            print('Found and verified', filename)  
        else:    
            print(statinfo.st_size)    
            raise Exception(        'Failed to verify ' + filename + '. Can you get to it with a browser?')  
        return filename
    
    filename = maybe_download('text8.zip', 31344016)
    
    def read_data(filename):  
        """解压缩并读取数据到数组中"""  
        with zipfile.ZipFile(filename) as f:    
            data = tf.compat.as_str(f.read(f.namelist()[0])).split() 
        return data
    
    words = read_data(filename)
    print('Data size', len(words))
    

    2.建立词典

    vocabulary_size = 50000
    def build_dataset(words):  
        count = [['UNK', -1]]
        """"获取高频词"""
        count.extend(
                collections.Counter(words).most_common(
                       vocabulary_size - 1))  
        dictionary = dict()  
        """给每个高频词一个编号"""
        for word, _ in count:    
            dictionary[word] = len(dictionary)  
        data = list()  
        unk_count = 0  
        for word in words:   
            if word in dictionary:      
                index = dictionary[word]    
            else:      
                index = 0  # dictionary['UNK']      
                unk_count += 1    
        data.append(index)  #data和words对应,把词转换为下标
        count[0][1] = unk_count  #低频词个数,都算同一个字符
        reverse_dictionary = dict(zip(dictionary.values(), dictionary.keys()))  
        return data, count, dictionary, reverse_dictionary
    
    """依次为所有词及下标,高频词及词频,高频词及下标,压缩词典"""
    data, count, dictionary, reverse_dictionary = build_dataset(words)
    del words  # Hint to reduce memory.
    print('Most common words (+UNK)', count[:5])
    print('Sample data', data[:10], [reverse_dictionary[i] for i in data[:10]])
    

    3.根据skip-gram模型batch生成训练数据

    data_index = 0
    def generate_batch(batch_size, num_skips, skip_window):   
        global data_index  
        assert batch_size % num_skips == 0  
        assert num_skips <= 2 * skip_window  
        """batch是一维,labels是二维"""
        batch = np.ndarray(shape=(batch_size), dtype=np.int32)     
        labels = np.ndarray(shape=(batch_size, 1), dtype=np.int32)  
        span = 2 * skip_window + 1 # 左右各取skip_window个词 
        buffer = collections.deque(maxlen=span)  
        for _ in range(span):    # 依次取span个词
            buffer.append(data[data_index])    
            data_index = (data_index + 1) % len(data)  
        for i in range(batch_size // num_skips):    
            target = skip_window  # 目标词是中间那个
            targets_to_avoid = [ skip_window ]    
            for j in range(num_skips):      #从目标次左右取num_skips个
                while target in targets_to_avoid:        
                    target = random.randint(0, span - 1)  
                targets_to_avoid.append(target)      
                batch[i * num_skips + j] = buffer[skip_window] 
                labels[i * num_skips + j, 0] = buffer[target]   
            buffer.append(data[data_index])   #deque挤掉最前面的 
            data_index = (data_index + 1) % len(data)  
        return batch, labels
    
    batch, labels = generate_batch(batch_size=8, num_skips=2, skip_window=1)
    for i in range(8):  
        print(batch[i], reverse_dictionary[batch[i]],      '->', labels[i, 0], reverse_dictionary[labels[i, 0]])
    

    4.构造神经网络

    batch_size = 128
    embedding_size = 128  # 词向量维度.
    skip_window = 1       # 左右窗口大小.
    num_skips = 2         #每个窗口取几个词
    valid_size = 16     # Random set of words to evaluate similarity on.
    valid_window = 100  # Only pick dev samples in the head of the distribution.
    valid_examples = np.random.choice(valid_window, valid_size, replace=False)
    num_sampled = 64    # Number of negative examples to sample.
    
    graph = tf.Graph()
    with graph.as_default():  
        """placeholder用来放置网络使用过程的数据"""
        train_inputs = tf.placeholder(tf.int32, shape=[batch_size])  
        train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1])  
        valid_dataset = tf.constant(valid_examples, dtype=tf.int32) 
    
        with tf.device('/cpu:0'):  
            """词向量,二维,词典大小*词向量维数"""
            embeddings = tf.Variable(        tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0)) 
            """根据train_inputs查找embedding"""   
            embed = tf.nn.embedding_lookup(embeddings, train_inputs)    
           """构造网络"""
           nce_weights = tf.Variable(        tf.truncated_normal([vocabulary_size, embedding_size],                            stddev=1.0 / math.sqrt(embedding_size)))    
           nce_biases = tf.Variable(tf.zeros([vocabulary_size]))  
           """定义lost function,"""
           loss = tf.reduce_mean(      
                    tf.nn.nce_loss(nce_weights, nce_biases, embed, train_labels,                     num_sampled, vocabulary_size))  
           """定义优化方法"""     
           optimizer = tf.train.GradientDescentOptimizer(1.0).minimize(loss)  
          """norm化,每一行平方求和再开方.  """
          norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True))  
          normalized_embeddings = embeddings / norm   
          """找到评估的几个词向量"""
          valid_embeddings = tf.nn.embedding_lookup(      normalized_embeddings, valid_dataset)  
          """相似度矩阵,得到每个待评估的词和所有词的相似度"""
          similarity = tf.matmul(      valid_embeddings, normalized_embeddings, transpose_b=True)  
          # Add variable initializer.  
          init = tf.initialize_all_variables()
    

    5.开始训练

    num_steps = 100001
    with tf.Session(graph=graph) as session:  
         """初始化所有变量"""
        init.run()  
        print("Initialized")  
        average_loss = 0  
        for step in xrange(num_steps):    
            batch_inputs, batch_labels = generate_batch(        batch_size, num_skips, skip_window)    
            feed_dict = {train_inputs : batch_inputs, train_labels : batch_labels}    
            """运行依次迭代,指定loss函数,训练方法,初始数据"""  
            _,loss_val = session.run([optimizer, loss], feed_dict=feed_dict)    
            average_loss += loss_val    
            if step % 2000 == 0:      
                if step > 0:        
                    average_loss /= 2000      
            # The average loss is an estimate of the loss over the last 2000 batches.      
                print("Average loss at step ", step, ": ", average_loss)  
                average_loss = 0    
            # Note that this is expensive (~20% slowdown if computed every 500 steps)    
            if step % 10000 == 0:      
                """计算similarity,结果是[评估个数*词数]"""
                sim = similarity.eval()      
                for i in xrange(valid_size):        
                    valid_word = reverse_dictionary[valid_examples[i]]      
                    top_k = 8 # number of nearest neighbors  
                    """每个词的top_k个最相似词"""      
                    nearest = (-sim[i, :]).argsort()[1:top_k+1]        
                    log_str = "Nearest to %s:" % valid_word        
                    for k in xrange(top_k):          
                        close_word = reverse_dictionary[nearest[k]]
                        log_str = "%s %s," % (log_str, close_word)
                    print(log_str)  
        final_embeddings = normalized_embeddings.eval()

    相关文章

      网友评论

          本文标题:tensorflow实战-10.word2vec

          本文链接:https://www.haomeiwen.com/subject/passuttx.html