我们来讨论下python的两种最重要的内置数据类型列表list和字典dict上,各种操作的复杂度。

list列表数据类型常用操作性能:
1、按索引取值和赋值(v=a[i],a[i]=v)
由于列表的随机访问特性,这两个操作执行时间与列表大小无关,均为O(1)
2、列表的曾长,可以选择append()和_add_() "+"
list.append(v)的执行时间O(1)
list = list + [v],执行时间是O(n+k),因为新增了一个新的列表,其中k是被加的列表长度
举例:4种生成前n个整数列表的方法
如图:

我们可以计算一下这四个函数的耗时,如下

执行结果:

我们可以看到,4种方法运行时间差别很大,test1使用列表连接最慢,而test4使用list range最快,速度相差近200倍。
如下图,我们总结下list基本操作的性能如何:

上图可知pop()从列表末尾移除元素O(1),但是pop(i)从列表中间移除元素要O(n),为什么呢?
因为从中部移除元素,要把移除元素后面的元素全部向前挪一位,才保证了列表按索引取值和赋值很快,达到O(1)。
dict数据类型:
字典和列表不同,dict根据key找到value,而list根据index。
字典最常用的取值get和赋值set,其性能为O(1),而contain(in)操作判断字典是否存在某个key,其性能也是O(1)

list和dict的in操作对比:
设计一个性能试验,验证list中检索一个值,对比dict中检索一个值的耗时对比。如下程序:

如果如下:

可见list的in操作复杂度为O(n)
PS:大家可以去python官方的算法复杂度网站看看:
网友评论