深度学习-使用tensorflow实现猫狗识别

作者: 寻风浪 | 来源:发表于2019-07-21 16:49 被阅读51次

    最近一直在撸猫,为了猫主子的事情忧三愁四,皱纹多了不少,头发也掉了好几根,神态也多了几分忧郁,唯一不变的还是那份闲鱼的懒散和浪荡的心。

    要说到深度学习图像分类的经典案例之一,那就是猫狗大战了。猫和狗在外观上的差别还是挺明显的,无论是体型、四肢、脸庞和毛发等等, 都是能通过肉眼很容易区分的。

    那么如何让机器来识别猫和狗呢?这就需要使用卷积神经网络来实现了。

    网上已经有不少人写过这案例了,我也来尝试下练练手。

    完整代码:https://github.com/ADlead/Dogs-Cats.git

    一. 数据集的准备和预处理

    猫狗照片的数据集直接从kaggle官网(https://www.kaggle.com/c/dogs-vs-cats)下载即可,下载后解压,可以看到有训练集和测试集


    train文件夹
    test1文件夹
    因为从官网下载的图片中test图片是没有标签的,无法用来测试模型的准确率。我便把训练图像集划分成训练图像集和测试图像集,分别用于训练模型和测试模型。把25000张图像划分成20000张训练图像和5000张测试图像。

    深度学习的框架使用的是tensorflow,为了能让tensorflow分批输入数据进行训练,我把所有的图像像素信息存储成batch文件。训练集100个batch文件,每个文件有200张图像。测试集1个batch文件,共5000张图像。

    存储成batch的代码如下:

    import cv2 as cv
    import os
    import numpy as np
    
    import random
    import pickle
    
    import time
    
    start_time = time.time()
    
    data_dir = './data'
    batch_save_path = './batch_files'
    
    # 创建batch文件存储的文件夹
    os.makedirs(batch_save_path, exist_ok=True)
    
    # 图片统一大小:100 * 100
    # 训练集 20000:100个batch文件,每个文件200张图片
    # 验证集 5000:一个测试文件,测试时 50张 x 100 批次
    
    # 进入图片数据的目录,读取图片信息
    all_data_files = os.listdir(os.path.join(data_dir, 'train/'))
    
    # print(all_data_files)
    
    # 打算数据的顺序
    random.shuffle(all_data_files)
    
    all_train_files = all_data_files[:20000]
    all_test_files = all_data_files[20000:]
    
    train_data = []
    train_label = []
    train_filenames = []
    
    test_data = []
    test_label = []
    test_filenames = []
    
    # 训练集
    for each in all_train_files:
        img = cv.imread(os.path.join(data_dir,'train/',each),1)
        resized_img = cv.resize(img, (100,100))
    
        img_data = np.array(resized_img)
        train_data.append(img_data)
        if 'cat' in each:
            train_label.append(0)
        elif 'dog' in each:
            train_label.append(1)
        else:
            raise Exception('%s is wrong train file'%(each))
        train_filenames.append(each)
    
    # 测试集
    for each in all_test_files:
        img = cv.imread(os.path.join(data_dir,'train/',each), 1)
        resized_img = cv.resize(img, (100,100))
    
        img_data = np.array(resized_img)
        test_data.append(img_data)
        if 'cat' in each:
            test_label.append(0)
        elif 'dog' in each:
            test_label.append(1)
        else:
            raise Exception('%s is wrong test file'%(each))
        test_filenames.append(each)
    
    print(len(train_data), len(test_data))
    
    # 制作100个batch文件
    start = 0
    end = 200
    for num in range(1, 101):
        batch_data = train_data[start: end]
        batch_label = train_label[start: end]
        batch_filenames = train_filenames[start: end]
        batch_name = 'training batch {} of 15'.format(num)
    
        all_data = {
        'data':batch_data,
        'label':batch_label,
        'filenames':batch_filenames,
        'name':batch_name
        }
    
        with open(os.path.join(batch_save_path, 'train_batch_{}'.format(num)), 'wb') as f:
            pickle.dump(all_data, f)
    
        start += 200
        end += 200
    
    # 制作测试文件
    all_test_data = {
        'data':test_data,
        'label':test_label,
        'filenames':test_filenames,
        'name':'test batch 1 of 1'
        }
    
    with open(os.path.join(batch_save_path, 'test_batch'), 'wb') as f:
        pickle.dump(all_test_data, f)
    
    end_time = time.time()
    print('制作结束, 用时{}秒'.format(end_time - start_time))
    

    运行程序后,文件就处理好了


    二. 神经网络的编写

    cnn卷积神经网络的编写如下,编写卷积层、池化层和全连接层的代码

    conv1_1 = tf.layers.conv2d(x, 16, (3, 3), padding='same', activation=tf.nn.relu, name='conv1_1')
    conv1_2 = tf.layers.conv2d(conv1_1, 16, (3, 3), padding='same', activation=tf.nn.relu, name='conv1_2')
    pool1 = tf.layers.max_pooling2d(conv1_2, (2, 2), (2, 2), name='pool1')
    conv2_1 = tf.layers.conv2d(pool1, 32, (3, 3), padding='same', activation=tf.nn.relu, name='conv2_1')
    conv2_2 = tf.layers.conv2d(conv2_1, 32, (3, 3), padding='same', activation=tf.nn.relu, name='conv2_2')
    pool2 = tf.layers.max_pooling2d(conv2_2, (2, 2), (2, 2), name='pool2')
    conv3_1 = tf.layers.conv2d(pool2, 64, (3, 3), padding='same', activation=tf.nn.relu, name='conv3_1')
    conv3_2 = tf.layers.conv2d(conv3_1, 64, (3, 3), padding='same', activation=tf.nn.relu, name='conv3_2')
    pool3 = tf.layers.max_pooling2d(conv3_2, (2, 2), (2, 2), name='pool3')
    conv4_1 = tf.layers.conv2d(pool3, 128, (3, 3), padding='same', activation=tf.nn.relu, name='conv4_1')
    conv4_2 = tf.layers.conv2d(conv4_1, 128, (3, 3), padding='same', activation=tf.nn.relu, name='conv4_2')
    pool4 = tf.layers.max_pooling2d(conv4_2, (2, 2), (2, 2), name='pool4')
    
    flatten = tf.layers.flatten(pool4)
    fc1 = tf.layers.dense(flatten, 512, tf.nn.relu)
    fc1_dropout = tf.nn.dropout(fc1, keep_prob=keep_prob)
    fc2 = tf.layers.dense(fc1, 256, tf.nn.relu)
    fc2_dropout = tf.nn.dropout(fc2, keep_prob=keep_prob)
    fc3 = tf.layers.dense(fc2, 2, None)
    

    三. Tensorflow计算图的构建

    然后,再搭建tensorflow的计算图,定义占位符,计算损失函数、预测值和准确率等等

    self.x = tf.placeholder(tf.float32, [None, IMAGE_SIZE, IMAGE_SIZE, 3], 'input_data')
    self.y = tf.placeholder(tf.int64, [None], 'output_data')
    self.keep_prob = tf.placeholder(tf.float32)
    
    # 图片输入网络中
    fc = self.conv_net(self.x, self.keep_prob)
    self.loss = tf.losses.sparse_softmax_cross_entropy(labels=self.y, logits=fc)
    self.y_ = tf.nn.softmax(fc) # 计算每一类的概率
    self.predict = tf.argmax(fc, 1)
    self.acc = tf.reduce_mean(tf.cast(tf.equal(self.predict, self.y), tf.float32))
    self.train_op = tf.train.AdamOptimizer(LEARNING_RATE).minimize(self.loss)
    self.saver = tf.train.Saver(max_to_keep=1)
    

    最后的saver是要将训练好的模型保存到本地。

    四. 模型的训练和测试

    然后编写训练部分的代码,训练步骤为1万步

    acc_list = []
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
    
        for i in range(TRAIN_STEP):
            train_data, train_label, _ = self.batch_train_data.next_batch(TRAIN_SIZE)
    
            eval_ops = [self.loss, self.acc, self.train_op]
            eval_ops_results = sess.run(eval_ops, feed_dict={
                self.x:train_data,
                self.y:train_label,
                self.keep_prob:0.7
            })
            loss_val, train_acc = eval_ops_results[0:2]
    
            acc_list.append(train_acc)
            if (i+1) % 100 == 0:
                acc_mean = np.mean(acc_list)
                print('step:{0},loss:{1:.5},acc:{2:.5},acc_mean:{3:.5}'.format(
                    i+1,loss_val,train_acc,acc_mean
                ))
            if (i+1) % 1000 == 0:
                test_acc_list = []
                for j in range(TEST_STEP):
                    test_data, test_label, _ = self.batch_test_data.next_batch(TRAIN_SIZE)
                    acc_val = sess.run([self.acc],feed_dict={
                        self.x:test_data,
                        self.y:test_label,
                        self.keep_prob:1.0
                })
                test_acc_list.append(acc_val)
                print('[Test ] step:{0}, mean_acc:{1:.5}'.format(
                    i+1, np.mean(test_acc_list)
                ))
        # 保存训练后的模型
        os.makedirs(SAVE_PATH, exist_ok=True)
        self.saver.save(sess, SAVE_PATH + 'my_model.ckpt')
    

    训练结果如下



    训练1万步后模型测试的平均准确率有0.82。

    五. 识别和分类

    最后,使用自己训练好的模型,把官网的测试图片(共12500张)识别后进行分类,并将分类后的图片分别写入到两个文件夹中,结果如下

    分类为狗的图片
    分类为猫的图片

    可以看出,分类之后还有少数分类不对的结果。看来模型还有待提升,还可以调整网络参数、调整学习率和学习步数、使用图像增强等技术对模型识别准确率进行提高。

    搞了一番,手和脚也有些累了。是时候撸撸猫继续闲鱼了。。

    相关文章

      网友评论

        本文标题:深度学习-使用tensorflow实现猫狗识别

        本文链接:https://www.haomeiwen.com/subject/puqvlctx.html