美文网首页
9.【动态规划】编辑距离

9.【动态规划】编辑距离

作者: blackzero2193 | 来源:发表于2019-11-11 23:43 被阅读0次

    题目链接:https://leetcode-cn.com/problems/edit-distance/
    描述:给定两个单词 word1 和 word2,计算出将 word1 转换成 word2 所使用的最少操作数 。
    你可以对一个单词进行如下三种操作:

    插入一个字符
    删除一个字符
    替换一个字符

    示例 1:

    输入: word1 = "horse", word2 = "ros"
    输出: 3
    解释: 
    horse -> rorse (将 'h' 替换为 'r')
    rorse -> rose (删除 'r')
    rose -> ros (删除 'e')
    

    示例 2:

    输入: word1 = "intention", word2 = "execution"
    输出: 5
    解释: 
    intention -> inention (删除 't')
    inention -> enention (将 'i' 替换为 'e')
    enention -> exention (将 'n' 替换为 'x')
    exention -> exection (将 'n' 替换为 'c')
    exection -> execution (插入 'u')
    
    • 解法一:传统的递归形式(会有最大递归深度的限制,超时)
    # 递归的方法,但是时间复杂度较高,需要使用一个dp数组记录重复操作的步骤
        def minDistance(word1, word2):
            """
            :type word1: str
            :type word2: str
            :rtype: int
            """
            if word1 == '':
                return len(word2)
            if word2 == '':
                return len(word1)
    
            if word1[-1] == word2[-1]:
                return self.minDistance2(word1[:-1], word2[:-1])
            else:
                res = 1 + min(
                    self.minDistance2(word1[:-1], word2[:-1]),
                    self.minDistance2(word1, word2[:-1]),
                    self.minDistance2(word1[:-1], word2)
                )
            return res
    
    • 解法二:动态规划,相当于空间换时间
    class Solution(object):
        def minDistance(self, word1, word2):
            """
            :type word1: str
            :type word2: str
            :rtype: int
            """
            n = len(word1)
            m = len(word2)
            dp = [[0 for j in range(m+1)] for i in range(n+1)]
            for i in range(n+1):
                for j in range(m+1):
                    if i == 0:
                        dp[i][j] = j
                        continue
                    if j == 0:
                        dp[i][j] = i
                        continue
                    if word1[i - 1] == word2[j - 1]:
                        dp[i][j] = dp[i - 1][j - 1]
                    else:
                        dp[i][j] = min(dp[i - 1][j - 1], 
                                       dp[i - 1][j],
                                       dp[i][j - 1]) + 1
            return dp[n][m]
    

    相关文章

      网友评论

          本文标题:9.【动态规划】编辑距离

          本文链接:https://www.haomeiwen.com/subject/qayxictx.html