记一次redis读取超时的排查过程(SADD惹的祸)
问题背景
在业务使用redis过程中,出现了read timeout 的异常。
问题排查
直接原因
运维查询redis慢查询日志,发现在异常时间节点,有redis慢查询日志,执行sadd 命令花费了1秒钟。但由于redis是单线程应用,执行单条命令的阻塞,会造成其他命令的排队等候,导致read timeout。
深入排查-为什么sadd这么慢呢
为什么sadd这么慢呢?查阅redis文档看到,sadd操作的复杂度是O(1)的,实际使用本机docker搭建redis进行测试,使用脚本进行sadd,直到800W以上的量级才偶尔出现100毫秒以上的情况。(测试过程详见后面)
搭建redis环境
偷懒在本机就行测试,使用docker跑起了redis应用,过程如下:
docker pull redis # 使用redis3.x版本
docker run -itv ~/redis.conf:/redis.conf -p 32768:6379 --name myredis5 -d redis redis-server /redis.conf
测试脚本
#coding=utf-8
import time
import redis
import random
r = redis.Redis(host='x.x.x.x', port=xxxx, decode_responses=True)
k = 'key4'
tarr = []
st = time.clock()
st2 = time.clock()
r.sadd(k, 1) # 创建连接也会有耗时
for i in range(1, 1600000):
t1 = time.clock() * 1000
rn = random.randint(100000000000, 20000000000000)
r.sadd(k, rn)
t2 = time.clock() * 1000
c = t2 - t1
tarr.append(str(c))
if c > 100:
print i, c
print time.clock()
s = "\n".join(tarr)
with open('./result.txt', 'w') as f:
f.write(s)
测试结果
到达800W的时候开始偶尔出现sadd需要100ms的现象。
问题分析
查询了很多资料,无意中看到redis del操作复杂度为O(n),这里补充一下超时的更多背景,举例如下:
慢查询日志时间:16号00点00分01秒,命令为sadd prefix_20180215, 且key有过期时间。
看到这里答案已经呼之欲出,是不是sadd触发了redis是过期删除操作,同时由于del命令的复杂度为O(n),时间花在了删除过期数据上。
测试重现
for i in range(1, 1000000):
t1 = time.clock() * 1000
rn = random.randint(100000000000, 20000000000000)
r.sadd(k, rn)
t2 = time.clock() * 1000
c = t2 - t1
tarr.append(str(c))
if c > 100:
print i, c
x = int(time.time())
x += 10 #延时10每秒过期
r.expire(k, 10)
while True:
y = time.time()
t1 = time.clock() * 1000
rn = random.randint(1, 1000000000)
r.sadd(k, rn)
t2 = time.clock() * 1000
tarr.append(str(c))
if c > 100:#复现sadd慢查询的情况
print i, c
if y > x + 5: # 超时时间就break
break
print time.clock()
重现的步骤很简单,
- 给某个key sadd上足够的数据(百万级)
- 给key设置一个相对过期时间。
- 持续调用sadd命令,记录调用时间。
- 最后观察redis的慢查询日志。
如猜想一样,慢查询日志中出现了SADD命令,耗时1秒。
解决方案与总结
由于redis 对于集合键的del操作复杂度均为O(n),所以对于集合键,最好设置通过分片,避免单个key的值过大。
另外,redis4.0已经通过配置支持延时删除,可以通过lazyfree_lazy_expire/azyfree_lazy_eviction/lazyfree_lazy_server_del 来实现异步删除的操作,避免异步阻塞
延伸阅读
最后,让我们来看看redis3.x和4.x处理删除key的源码吧。
redis 有三种淘汰key的机制,分别为
- del命令
- 被动淘汰(当请求命令对应的键过期时进行删除)
- 主动删除(redis主动对键进行淘汰,回收内存)
我们先看看redis3.x版本中上面三种淘汰机制的入口代码。
del命令 - delCommand
void delCommand(client *c) {
int deleted = 0, j;
for (j = 1; j < c->argc; j++) {
expireIfNeeded(c->db,c->argv[j]);
if (dbDelete(c->db,c->argv[j])) {
signalModifiedKey(c->db,c->argv[j]);
notifyKeyspaceEvent(NOTIFY_GENERIC,
"del",c->argv[j],c->db->id);
server.dirty++;
deleted++;
}
}
addReplyLongLong(c,deleted);
}
处理流程相当的简单,先检查键是否过期,然后调用dbDelete进行删除
被动淘汰 - expireIfNeeded
int expireIfNeeded(redisDb *db, robj *key) {
mstime_t when = getExpire(db,key); //获取过期时间
mstime_t now;
if (when < 0) return 0; /* No expire for this key */
/* Don't expire anything while loading. It will be done later. */
if (server.loading) return 0;
/* If we are in the context of a Lua script, we claim that time is
* blocked to when the Lua script started. This way a key can expire
* only the first time it is accessed and not in the middle of the
* script execution, making propagation to slaves / AOF consistent.
* See issue #1525 on Github for more information. */
now = server.lua_caller ? server.lua_time_start : mstime(); // 过去当前时间
/* If we are running in the context of a slave, return ASAP:
* the slave key expiration is controlled by the master that will
* send us synthesized DEL operations for expired keys.
*
* Still we try to return the right information to the caller,
* that is, 0 if we think the key should be still valid, 1 if
* we think the key is expired at this time. */
if (server.masterhost != NULL) return now > when;
/* Return when this key has not expired */
if (now <= when) return 0;
/* Delete the key */
server.stat_expiredkeys++;
propagateExpire(db,key); // 把过期时间传递出去(从库、AOF备份等)
notifyKeyspaceEvent(NOTIFY_EXPIRED,
"expired",key,db->id); // 对db内的键发生的变动进行通知,适用于pubsub 通过pubsub来传递消息,可以用来作为redis的执行监控
return dbDelete(db,key);
}
主动淘汰 - serverCron
server.c文件
int serverCron(struct aeEventLoop *eventLoop, long long id, void *clientData) {
/**
* sth not important
*/
...
/* We need to do a few operations on clients asynchronously. */
clientsCron();
/* Handle background operations on Redis databases. */
databasesCron();
/**
* sth not important
*/
...
server.cronloops++;
return 1000/server.hz;
}
/* This function handles 'background' operations we are required to do
* incrementally in Redis databases, such as active key expiring, resizing,
* rehashing. */
void databasesCron(void) {
/* Expire keys by random sampling. Not required for slaves
* as master will synthesize DELs for us. */
if (server.active_expire_enabled && server.masterhost == NULL)
activeExpireCycle(ACTIVE_EXPIRE_CYCLE_SLOW);
/**
* sth not important
*/
}
/* Try to expire a few timed out keys. The algorithm used is adaptive and
* will use few CPU cycles if there are few expiring keys, otherwise
* it will get more aggressive to avoid that too much memory is used by
* keys that can be removed from the keyspace.
*
* No more than CRON_DBS_PER_CALL databases are tested at every
* iteration.
*
* This kind of call is used when Redis detects that timelimit_exit is
* true, so there is more work to do, and we do it more incrementally from
* the beforeSleep() function of the event loop.
*
* Expire cycle type:
*
* If type is ACTIVE_EXPIRE_CYCLE_FAST the function will try to run a
* "fast" expire cycle that takes no longer than EXPIRE_FAST_CYCLE_DURATION
* microseconds, and is not repeated again before the same amount of time.
*
* If type is ACTIVE_EXPIRE_CYCLE_SLOW, that normal expire cycle is
* executed, where the time limit is a percentage of the REDIS_HZ period
* as specified by the REDIS_EXPIRELOOKUPS_TIME_PERC define. */
void activeExpireCycle(int type) {
int dbs_per_call = CRON_DBS_PER_CALL;
/* We usually should test CRON_DBS_PER_CALL per iteration, with
* two exceptions:
*
* 1) Don't test more DBs than we have.
* 2) If last time we hit the time limit, we want to scan all DBs
* in this iteration, as there is work to do in some DB and we don't want
* expired keys to use memory for too much time. */
if (dbs_per_call > server.dbnum || timelimit_exit)
dbs_per_call = server.dbnum; //每次清理扫描的数据库数
/* We can use at max ACTIVE_EXPIRE_CYCLE_SLOW_TIME_PERC percentage of CPU time
* per iteration. Since this function gets called with a frequency of
* server.hz times per second, the following is the max amount of
* microseconds we can spend in this function. */
timelimit = 1000000*ACTIVE_EXPIRE_CYCLE_SLOW_TIME_PERC/server.hz/100;
timelimit_exit = 0;
if (timelimit <= 0) timelimit = 1;
if (type == ACTIVE_EXPIRE_CYCLE_FAST)
timelimit = ACTIVE_EXPIRE_CYCLE_FAST_DURATION; /* in microseconds. */
for (j = 0; j < dbs_per_call; j++) {
int expired;
redisDb *db = server.db+(current_db % server.dbnum);
/* Increment the DB now so we are sure if we run out of time
* in the current DB we'll restart from the next. This allows to
* distribute the time evenly across DBs. */
current_db++;
/* Continue to expire if at the end of the cycle more than 25%
* of the keys were expired. */
// 如果有超过25%的键过期了则继续扫描
do {
unsigned long num, slots;
long long now, ttl_sum;
int ttl_samples;
/* If there is nothing to expire try next DB ASAP. */
if ((num = dictSize(db->expires)) == 0) { //当前没有需要过期的键
db->avg_ttl = 0;
break;
}
slots = dictSlots(db->expires);
now = mstime();
/* When there are less than 1% filled slots getting random
* keys is expensive, so stop here waiting for better times...
* The dictionary will be resized asap. */
if (num && slots > DICT_HT_INITIAL_SIZE &&
(num*100/slots < 1)) break;
/* The main collection cycle. Sample random keys among keys
* with an expire set, checking for expired ones. */
expired = 0;
ttl_sum = 0;
ttl_samples = 0;
if (num > ACTIVE_EXPIRE_CYCLE_LOOKUPS_PER_LOOP)
num = ACTIVE_EXPIRE_CYCLE_LOOKUPS_PER_LOOP; // 3.2.11为20次
while (num--) {
dictEntry *de;
long long ttl;
if ((de = dictGetRandomKey(db->expires)) == NULL) break; //随机获取一个键
ttl = dictGetSignedIntegerVal(de)-now;
if (activeExpireCycleTryExpire(db,de,now)) expired++;
if (ttl > 0) {
/* We want the average TTL of keys yet not expired. */
ttl_sum += ttl;
ttl_samples++;
}
}
/**
* 这里有一些控制删除时间的逻辑和其他逻辑。
*/
if (timelimit_exit) return;
/* We don't repeat the cycle if there are less than 25% of keys
* found expired in the current DB. */
} while (expired > ACTIVE_EXPIRE_CYCLE_LOOKUPS_PER_LOOP/4); // 20次 / 4
}
}
/* ======================= Cron: called every 100 ms ======================== */
/* Helper function for the activeExpireCycle() function.
* This function will try to expire the key that is stored in the hash table
* entry 'de' of the 'expires' hash table of a Redis database.
*
* If the key is found to be expired, it is removed from the database and
* 1 is returned. Otherwise no operation is performed and 0 is returned.
*
* When a key is expired, server.stat_expiredkeys is incremented.
*
* The parameter 'now' is the current time in milliseconds as is passed
* to the function to avoid too many gettimeofday() syscalls. */
int activeExpireCycleTryExpire(redisDb *db, dictEntry *de, long long now) {
long long t = dictGetSignedIntegerVal(de);
if (now > t) {
sds key = dictGetKey(de);
robj *keyobj = createStringObject(key,sdslen(key));
propagateExpire(db,keyobj);
dbDelete(db,keyobj);
notifyKeyspaceEvent(NOTIFY_EXPIRED,
"expired",keyobj,db->id);
decrRefCount(keyobj);
server.stat_expiredkeys++;
return 1;
} else {
return 0;
}
}
主动删除的调用路径为serverCron -> databasesCron -> activeExpireCycle -> activeExpireCycleTryExpire, 我们主要看看activeExpireCycleTryExpire。
主动淘汰是通过随机采样来进行删除的,随机的算法很简单,就是通过random来进行的,先random出slot,然后random出slot上的链表中的某个节点。另外会根据删除时间长短和过期键的数量来决定一次 主动淘汰的扫描db数量和次数。
顺带说说,serverCron是redis的 周期任务,通过定时器注册,databasesCron除了主动淘汰键,还会做rehash、resize等事情。
底层调用
三种机制虽然不同,但他们调用的底层都是相同的——dbDelete方法。
db.c 文件
/* Delete a key, value, and associated expiration entry if any, from the DB */
int dbDelete(redisDb *db, robj *key) {
/* Deleting an entry from the expires dict will not free the sds of
* the key, because it is shared with the main dictionary. */
if (dictSize(db->expires) > 0) dictDelete(db->expires,key->ptr);
if (dictDelete(db->dict,key->ptr) == DICT_OK) {
if (server.cluster_enabled) slotToKeyDel(key);
return 1;
} else {
return 0;
}
}
dict.c文件
int dictDelete(dict *ht, const void *key) {
return dictGenericDelete(ht,key,0);
}
/* Search and remove an element */
static int dictGenericDelete(dict *d, const void *key, int nofree)
{
unsigned int h, idx;
dictEntry *he, *prevHe;
int table;
if (d->ht[0].size == 0) return DICT_ERR; /* d->ht[0].table is NULL */
if (dictIsRehashing(d)) _dictRehashStep(d);
h = dictHashKey(d, key);
for (table = 0; table <= 1; table++) {
idx = h & d->ht[table].sizemask;
he = d->ht[table].table[idx];
prevHe = NULL;
while(he) {
if (key==he->key || dictCompareKeys(d, key, he->key)) {
/* Unlink the element from the list */
if (prevHe)
prevHe->next = he->next;
else
d->ht[table].table[idx] = he->next;
if (!nofree) {
dictFreeKey(d, he);
dictFreeVal(d, he);
}
zfree(he);
d->ht[table].used--;
return DICT_OK;
}
prevHe = he;
he = he->next;
}
if (!dictIsRehashing(d)) break;
}
return DICT_ERR; /* not found */
}
/* ------------------------------- Macros ------------------------------------*/
#define dictFreeVal(d, entry) \
if ((d)->type->valDestructor) \
(d)->type->valDestructor((d)->privdata, (entry)->v.val)
server.c
/* Db->dict, keys are sds strings, vals are Redis objects. */
dictType dbDictType = {
dictSdsHash, /* hash function */
NULL, /* key dup */
NULL, /* val dup */
dictSdsKeyCompare, /* key compare */
dictSdsDestructor, /* key destructor */
dictObjectDestructor /* val destructor */
};
void dictObjectDestructor(void *privdata, void *val)
{
DICT_NOTUSED(privdata);
if (val == NULL) return; /* Values of swapped out keys as set to NULL */
decrRefCount(val);
}
object.c
void decrRefCount(robj *o) {
if (o->refcount <= 0) serverPanic("decrRefCount against refcount <= 0");
if (o->refcount == 1) {
switch(o->type) {
case OBJ_STRING: freeStringObject(o); break;
case OBJ_LIST: freeListObject(o); break;
case OBJ_SET: freeSetObject(o); break;
case OBJ_ZSET: freeZsetObject(o); break;
case OBJ_HASH: freeHashObject(o); break;
default: serverPanic("Unknown object type"); break;
}
zfree(o);
} else {
o->refcount--;
}
}
void freeSetObject(robj *o) {
switch (o->encoding) {
case OBJ_ENCODING_HT:
dictRelease((dict*) o->ptr);
break;
case OBJ_ENCODING_INTSET:
zfree(o->ptr);
break;
default:
serverPanic("Unknown set encoding type");
}
}
可以看到核心的删除是在dictFreeVal里,对应了一个宏,这个宏调用的是对应dictType的 valDestructor,也就是dbDictType里指定的dictObjectDestructor函数,对应的删除操作在decrRefCount(严格来说是通过引用计数来管理声明周期)
decrRefCount内对每种数据类型有对应的释放方法,我们来看set的释放方法freeSetObject方法。根据Set的两种数据类型有两种处理方式,intset只需要释放指针就好了,如果是哈希表则调用dictRelease方法。
dict.c
/* Clear & Release the hash table */
void dictRelease(dict *d)
{
_dictClear(d,&d->ht[0],NULL);
_dictClear(d,&d->ht[1],NULL);
zfree(d);
}
/* Destroy an entire dictionary */
int _dictClear(dict *d, dictht *ht, void(callback)(void *)) {
unsigned long i;
/* Free all the elements */
for (i = 0; i < ht->size && ht->used > 0; i++) {
dictEntry *he, *nextHe;
if (callback && (i & 65535) == 0) callback(d->privdata);
if ((he = ht->table[i]) == NULL) continue;
while(he) {
nextHe = he->next;
dictFreeKey(d, he);
dictFreeVal(d, he);
zfree(he);
ht->used--;
he = nextHe;
}
}
/* Free the table and the allocated cache structure */
zfree(ht->table);
/* Re-initialize the table */
_dictReset(ht);
return DICT_OK; /* never fails */
}
至此(dictClear方法)我们可以看到这是一个O(N)的过程,需要遍历ht每一个元素并进行删除,所以都存在阻塞redis的风险。(即使是主动淘汰的机制)
这一点在redis4.x系列已经通过延迟删除解决。
网友评论