美文网首页
GO语言基础(四)

GO语言基础(四)

作者: 87d6dc4b11a7 | 来源:发表于2022-01-15 09:12 被阅读0次

方法

Go 没有类。不过你可以为结构体类型定义方法。
方法就是一类带特殊的 接收者 参数的函数。
方法接收者在它自己的参数列表内,位于func 关键字和方法名之间。
在此例中,Abs方法拥有一个名为 v,类型为 Vertex的接收者。

package main

import (
    "fmt"
    "math"
)

type Vertex struct {
    X, Y float64
}

func (v Vertex) Abs() float64 {
    return math.Sqrt(v.X*v.X + v.Y*v.Y)
}

func main() {
    v := Vertex{3, 4}
    fmt.Println(v.Abs())
}

方法即函数

记住:方法只是个带接收者参数的函数。

现在这个 Abs 的写法就是个正常的函数,功能并没有什么变化。

package main

import (
    "fmt"
    "math"
)

type Vertex struct {
    X, Y float64
}

func Abs(v Vertex) float64 {
    return math.Sqrt(v.X*v.X + v.Y*v.Y)
}

func main() {
    v := Vertex{3, 4}
    fmt.Println(Abs(v))
}

指针接收者

你可以为指针接收者声明方法。

这意味着对于某类型 T,接收者的类型可以用 *T 的文法。(此外,T 不能是像 *int 这样的指针。)

例如,这里为 *Vertex 定义了 Scale 方法。

指针接收者的方法可以修改接收者指向的值(就像 Scale 在这做的)。由于方法经常需要修改它的接收者,指针接收者比值接收者更常用。

试着移除第 16 行 Scale 函数声明中的 *,观察此程序的行为如何变化。

若使用值接收者,那么 Scale 方法会对原始 Vertex 值的副本进行操作。(对于函数的其它参数也是如此。)Scale 方法必须用指针接受者来更改 main 函数中声明的 Vertex 的值。

package main

import (
    "fmt"
    "math"
)

type Vertex struct {
    X, Y float64
}

func (v Vertex) Abs() float64 {
    return math.Sqrt(v.X*v.X + v.Y*v.Y)
}

func (v *Vertex) Scale(f float64) {
    v.X = v.X * f
    v.Y = v.Y * f
}

func main() {
    v := Vertex{3, 4}
    v.Scale(10)
    fmt.Println(v.Abs())
}

指针与函数

现在我们要把 Abs 和 Scale 方法重写为函数。

package main

import (
        "fmt"
    "math"
)

type Vertex struct {
    X, Y float64
}

func Abs(v Vertex) float64 {
    return math.Sqrt(v.X*v.X + v.Y*v.Y)
}

func Scale(v *Vertex, f float64) {
    v.X = v.X * f
    v.Y = v.Y * f
}

func main() {
    v := Vertex{3, 4}
    Scale(&v, 10)
    fmt.Println(Abs(v))
}

选择值或指针作为接收者

使用指针接收者的原因有二:
首先,方法能够修改其接收者指向的值。
其次,这样可以避免在每次调用方法时复制该值。若值的类型为大型结构体时,这样做会更加高效。

在本例中,Scale 和 Abs 接收者的类型为 *Vertex,即便 Abs 并不需要修改其接收者。
通常来说,所有给定类型的方法都应该有值或指针接收者,但并不应该二者混用。

package main

import (
    "fmt"
    "math"
)

type Vertex struct {
    X, Y float64
}

func (v *Vertex) Scale(f float64) {
    v.X = v.X * f
    v.Y = v.Y * f
}

func (v *Vertex) Abs() float64 {
    return math.Sqrt(v.X*v.X + v.Y*v.Y)
}

func main() {
    v := &Vertex{3, 4}
    fmt.Printf("Before scaling: %+v, Abs: %v\n", v, v.Abs())
    v.Scale(5)
    fmt.Printf("After scaling: %+v, Abs: %v\n", v, v.Abs())
}

接口

接口类型 是由一组方法签名定义的集合。
接口类型的变量可以保存任何实现了这些方法的值。

接口与隐式实现

类型通过实现一个接口的所有方法来实现该接口。既然无需专门显式声明,也就没有“implements”关键字。
隐式接口从接口的实现中解耦了定义,这样接口的实现可以出现在任何包中,无需提前准备。
因此,也就无需在每一个实现上增加新的接口名称,这样同时也鼓励了明确的接口定义。

package main

import "fmt"

type I interface {
    M()
}

type T struct {
    S string
}

// 此方法表示类型 T 实现了接口 I,但我们无需显式声明此事。
func (t T) M() {
    fmt.Println(t.S)
}

func main() {
    var i I = T{"hello"}
    i.M()
}

接口值

接口也是值。它们可以像其它值一样传递。
接口值可以用作函数的参数或返回值。
在内部,接口值可以看做包含值和具体类型的元组:

(value, type)

接口值保存了一个具体底层类型的具体值。
接口值调用方法时会执行其底层类型的同名方法。

package main

import (
    "fmt"
    "math"
)

type I interface {
    M()
}

type T struct {
    S string
}

func (t *T) M() {
    fmt.Println(t.S)
}

type F float64

func (f F) M() {
    fmt.Println(f)
}

func main() {
    var i I

    i = &T{"Hello"}
    describe(i)
    i.M()

    i = F(math.Pi)
    describe(i)
    i.M()
}

func describe(i I) {
    fmt.Printf("(%v, %T)\n", i, i)
}

底层值为 nil 的接口值

即便接口内的具体值为 nil,方法仍然会被 nil 接收者调用。
在一些语言中,这会触发一个空指针异常,但在 Go 中通常会写一些方法来优雅地处理它(如本例中的 M 方法)。
注意: 保存了 nil 具体值的接口其自身并不为 nil。

package main

import "fmt"

type I interface {
    M()
}

type T struct {
    S string
}

func (t *T) M() {
    if t == nil {
        fmt.Println("<nil>")
        return
    }
    fmt.Println(t.S)
}

func main() {
    var i I

    var t *T
    i = t
    describe(i)
    i.M()

    i = &T{"hello"}
    describe(i)
    i.M()
}

func describe(i I) {
    fmt.Printf("(%v, %T)\n", i, i)
}

nil 接口值
nil 接口值既不保存值也不保存具体类型。
为 nil 接口调用方法会产生运行时错误,因为接口的元组内并未包含能够指明该调用哪个 具体 方法的类型。

空接口

指定了零个方法的接口值被称为空接口:

interface{}

空接口可保存任何类型的值。(因为每个类型都至少实现了零个方法。)
空接口被用来处理未知类型的值。例如,fmt.Print 可接受类型为interface{}的任意数量的参数。

package main

import "fmt"

func main() {
    var i interface{}
    describe(i)

    i = 42
    describe(i)

    i = "hello"
    describe(i)
}

func describe(i interface{}) {
    fmt.Printf("(%v, %T)\n", i, i)
}

类型断言

类型断言 提供了访问接口值底层具体值的方式。

t := i.(T)

该语句断言接口值 i 保存了具体类型 T,并将其底层类型为 T 的值赋予变量 t。
若 i 并未保存 T 类型的值,该语句就会触发一个恐慌。
为了 判断 一个接口值是否保存了一个特定的类型,类型断言可返回两个值:其底层值以及一个报告断言是否成功的布尔值。

t, ok := i.(T)

若 i 保存了一个 T,那么 t 将会是其底层值,而 ok 为 true。
否则,ok 将为 false 而 t 将为 T 类型的零值,程序并不会产生恐慌。

package main

import "fmt"

func main() {
    var i interface{} = "hello"

    s := i.(string)
    fmt.Println(s)

    s, ok := i.(string)
    fmt.Println(s, ok)

    f, ok := i.(float64)
    fmt.Println(f, ok)

    f = i.(float64) // 报错(panic)
    fmt.Println(f)
}

类型选择

类型选择 是一种按顺序从几个类型断言中选择分支的结构。
类型选择与一般的 switch 语句相似,不过类型选择中的 case 为类型(而非值), 它们针对给定接口值所存储的值的类型进行比较。

switch v := i.(type) {
case T:
    // v 的类型为 T
case S:
    // v 的类型为 S
default:
    // 没有匹配,v 与 i 的类型相同
}

类型选择中的声明与类型断言 i.(T) 的语法相同,只是具体类型 T 被替换成了关键字 type。
此选择语句判断接口值 i 保存的值类型是 T 还是 S。在 T 或 S 的情况下,变量 v 会分别按 T 或 S 类型保存 i 拥有的值。在默认(即没有匹配)的情况下,变量 v 与 i 的接口类型和值相同。

package main

import "fmt"

func do(i interface{}) {
    switch v := i.(type) {
    case int:
        fmt.Printf("Twice %v is %v\n", v, v*2)
    case string:
        fmt.Printf("%q is %v bytes long\n", v, len(v))
    default:
        fmt.Printf("I don't know about type %T!\n", v)
    }
}

func main() {
    do(21)
    do("hello")
    do(true)
}
Stringer

fmt包中定义的 Stringer是最普遍的接口之一。

type Stringer interface {
    String() string
}

Stringer 是一个可以用字符串描述自己的类型。fmt 包(还有很多包)都通过此接口来打印值。

package main

import "fmt"

type Person struct {
    Name string
    Age  int
}

func (p Person) String() string {
    return fmt.Sprintf("%v (%v years)", p.Name, p.Age)
}

func main() {
    a := Person{"Arthur Dent", 42}
    z := Person{"Zaphod Beeblebrox", 9001}
    fmt.Println(a, z)
}

错误

Go 程序使用 error 值来表示错误状态。
与 fmt.Stringer 类似,error 类型是一个内建接口:

type error interface {
    Error() string
}

(与 fmt.Stringer 类似,fmt 包在打印值时也会满足 error。)
通常函数会返回一个 error 值,调用的它的代码应当判断这个错误是否等于 nil 来进行错误处理。

i, err := strconv.Atoi("42")
if err != nil {
    fmt.Printf("couldn't convert number: %v\n", err)
    return
}
fmt.Println("Converted integer:", i)

error 为 nil 时表示成功;非 nil 的 error 表示失败。

package main

import (
    "fmt"
    "time"
)

type MyError struct {
    When time.Time
    What string
}

func (e *MyError) Error() string {
    return fmt.Sprintf("at %v, %s",
        e.When, e.What)
}

func run() error {
    return &MyError{
        time.Now(),
        "it didn't work",
    }
}

func main() {
    if err := run(); err != nil {
        fmt.Println(err)
    }
}
Reader

io 包指定了 io.Reader 接口,它表示从数据流的末尾进行读取。
Go 标准库包含了该接口的许多实现,包括文件、网络连接、压缩和加密等等。
io.Reader 接口有一个 Read 方法:

func (T) Read(b []byte) (n int, err error)

Read 用数据填充给定的字节切片并返回填充的字节数和错误值。在遇到数据流的结尾时,它会返回一个 io.EOF 错误。

图像

image 包定义了 Image 接口:

package image

type Image interface {
    ColorModel() color.Model
    Bounds() Rectangle
    At(x, y int) color.Color
}

注意: Bounds 方法的返回值 Rectangle 实际上是一个 image.Rectangle,它在 image 包中声明。
color.Colorcolor.Model 类型也是接口,但是通常因为直接使用预定义的实现 image.RGBAimage.RGBAModel 而被忽视了。这些接口和类型由 image/color 包定义。

相关文章

  • go语言基础

    go语言基础 go 语言接口

  • GO语言基础(四)

    方法 Go 没有类。不过你可以为结构体类型定义方法。方法就是一类带特殊的 接收者 参数的函数。方法接收者在它自己的...

  • 初识Go语言-1

    Go语言学习路径 初识Go语言 Go语言环境搭建与IDE安装 Go语言基础语法 Go语言数据类型 Go语言变量和常...

  • Go语言基础语法--注释、基础结构2

    章节 GO语言基础语法--注释、基础结构(重要) 1.GO语言基础语法---注释、基础结构 基础结构注意事项 源文...

  • Go语言入坑

    GO语言基础 认识并安装GO语言开发环境 Go语言简介 Go语言是谷歌2009年发布的第二款开源编程语言 go语言...

  • 《GO语言圣经》读书笔记 第三章 基础数据类型

    Go语言将数据类型分为四类:** 基础类型、复合类型、引用类型和接口类型 ** 整型 Go语言的数值类型包括几种不...

  • Go语言基础练习四

    结构体版学生管理系统 student_magr.go main.go

  • go基础

    go 语言基础知识汇总

  • Go学习-数据类型

    Go数据类型 Go语言将数据类型分为四类 基础类型 复合类型 引用类型 接口类型 基础类型 数字 字符串 布尔 整...

  • Golang资料整理

    视频 郝林-Go语言第一课 Go编程基础 Go Web 基础 Go名库讲解 社区 官网要翻墙 Github--Go...

网友评论

      本文标题:GO语言基础(四)

      本文链接:https://www.haomeiwen.com/subject/rgopcrtx.html