美文网首页人脸检测
人脸检测——mtcnn思想,生成negative、positiv

人脸检测——mtcnn思想,生成negative、positiv

作者: MachineLP | 来源:发表于2017-09-21 14:18 被阅读123次

    negative样本:IOU < 0.3,标签为:0 0 0 0 0
    positive样本:IOU > =0.65,标签为:1 0.01 0.02 0.01 0.02
    part样本:0.4 <= IOU < 0.65,标签为: -1 0.03 0.04 0.03 0.04
    注意mtcnn的label加了回归框,训练时候的输出层要作修改:(回归框的作用还是很大的)
    compute bbox reg label,其中x1,x2,y1,y2为真实的人脸坐标,x_left,x_right,y_top,y_bottom,width,height为预测的人脸坐标,
    如果是在准备人脸和非人脸样本的时候,x_left,x_right,y_top,y_bottom,width,height就是你的滑动窗与真实人脸的IOU>0.65(根据你的定义)的滑动窗坐标。
    offset_x1 = (x1 - x_left) / float(width)
    offset_y1 = (y1 - y_top) / float(height)
    offset_x2 = (x2 - x_right) / float(width)
    offset_y2 = (y2 - y_bottom ) / float(height)

    很多人可能会有一个疑问:就是训练的时候人脸样本时候回归框label的,但非人脸呢,这地方可以全给0。
    代码:

    import numpy as np
    import cv2
    import os
    import numpy.random as npr
    from utils import IoU
    
    anno_file = "./wider_annotations/anno.txt"
    im_dir = "/home/seanlx/Dataset/wider_face/WIDER_train/images"
    neg_save_dir = "/data3/seanlx/mtcnn1/12/negative"
    pos_save_dir = "/data3/seanlx/mtcnn1/12/positive"
    part_save_dir = "/data3/seanlx/mtcnn1/12/part"
    
    save_dir = "./pnet"
    if not os.path.exists(save_dir):
        os.mkdir(save_dir)
    f1 = open(os.path.join(save_dir, 'pos_12.txt'), 'w')
    f2 = open(os.path.join(save_dir, 'neg_12.txt'), 'w')
    f3 = open(os.path.join(save_dir, 'part_12.txt'), 'w')
    
    with open(anno_file, 'r') as f:
        annotations = f.readlines()
    
    num = len(annotations)
    print "%d pics in total" % num
    p_idx = 0 # positive
    n_idx = 0 # negative
    d_idx = 0 # dont care
    idx = 0
    box_idx = 0
    for annotation in annotations:
        annotation = annotation.strip().split(' ')
        im_path = annotation[0]
        bbox = map(float, annotation[1:])
        boxes = np.array(bbox, dtype=np.float32).reshape(-1, 4)
        img = cv2.imread(os.path.join(im_dir, im_path + '.jpg'))
        idx += 1
        if idx % 100 == 0:
            print idx, "images done"
    
        height, width, channel = img.shape
    
        neg_num = 0
        while neg_num < 50:
            size = npr.randint(12, min(width, height) / 2)
            nx = npr.randint(0, width - size)
            ny = npr.randint(0, height - size)
            crop_box = np.array([nx, ny, nx + size, ny + size])
    
            Iou = IoU(crop_box, boxes)
    
            cropped_im = img[ny : ny + size, nx : nx + size, :]
            resized_im = cv2.resize(cropped_im, (12, 12), interpolation=cv2.INTER_LINEAR)
    
            if np.max(Iou) < 0.3:
                # Iou with all gts must below 0.3
                save_file = os.path.join(neg_save_dir, "%s.jpg"%n_idx)
                f2.write("12/negative/%s"%n_idx + ' 0\n')
                cv2.imwrite(save_file, resized_im)
                n_idx += 1
                neg_num += 1
    
    
        for box in boxes:
            # box (x_left, y_top, x_right, y_bottom)
            x1, y1, x2, y2 = box
            w = x2 - x1 + 1
            h = y2 - y1 + 1
    
            # ignore small faces
            # in case the ground truth boxes of small faces are not accurate
            if max(w, h) < 40 or x1 < 0 or y1 < 0:
                continue
    
            # generate negative examples that have overlap with gt
            for i in range(5):
                size = npr.randint(12,  min(width, height) / 2)
                # delta_x and delta_y are offsets of (x1, y1)
                delta_x = npr.randint(max(-size, -x1), w)
                delta_y = npr.randint(max(-size, -y1), h)
                nx1 = max(0, x1 + delta_x)
                ny1 = max(0, y1 + delta_y)
                if nx1 + size > width or ny1 + size > height:
                    continue
                crop_box = np.array([nx1, ny1, nx1 + size, ny1 + size])
                Iou = IoU(crop_box, boxes)
    
                cropped_im = img[ny1 : ny1 + size, nx1 : nx1 + size, :]
                resized_im = cv2.resize(cropped_im, (12, 12), interpolation=cv2.INTER_LINEAR)
    
                if np.max(Iou) < 0.3:
                    # Iou with all gts must below 0.3
                    save_file = os.path.join(neg_save_dir, "%s.jpg"%n_idx)
                    f2.write("12/negative/%s"%n_idx + ' 0\n')
                    cv2.imwrite(save_file, resized_im)
                    n_idx += 1
    
            # generate positive examples and part faces
            for i in range(20):
                size = npr.randint(int(min(w, h) * 0.8), np.ceil(1.25 * max(w, h)))
    
                # delta here is the offset of box center
                delta_x = npr.randint(-w * 0.2, w * 0.2)
                delta_y = npr.randint(-h * 0.2, h * 0.2)
    
                nx1 = max(x1 + w / 2 + delta_x - size / 2, 0)
                ny1 = max(y1 + h / 2 + delta_y - size / 2, 0)
                nx2 = nx1 + size
                ny2 = ny1 + size
    
                if nx2 > width or ny2 > height:
                    continue
                crop_box = np.array([nx1, ny1, nx2, ny2])
    
                offset_x1 = (x1 - nx1) / float(size)
                offset_y1 = (y1 - ny1) / float(size)
                offset_x2 = (x2 - nx2) / float(size)
                offset_y2 = (y2 - ny2) / float(size)
    
                cropped_im = img[ny1 : ny2, nx1 : nx2, :]
                resized_im = cv2.resize(cropped_im, (12, 12), interpolation=cv2.INTER_LINEAR)
    
                box_ = box.reshape(1, -1)
                if IoU(crop_box, box_) >= 0.65:
                    save_file = os.path.join(pos_save_dir, "%s.jpg"%p_idx)
                    f1.write("12/positive/%s"%p_idx + ' 1 %.2f %.2f %.2f %.2f\n'%(offset_x1, offset_y1, offset_x2, offset_y2))
                    cv2.imwrite(save_file, resized_im)
                    p_idx += 1
                elif IoU(crop_box, box_) >= 0.4:
                    save_file = os.path.join(part_save_dir, "%s.jpg"%d_idx)
                    f3.write("12/part/%s"%d_idx + ' -1 %.2f %.2f %.2f %.2f\n'%(offset_x1, offset_y1, offset_x2, offset_y2))
                    cv2.imwrite(save_file, resized_im)
                    d_idx += 1
            box_idx += 1
            print "%s images done, pos: %s part: %s neg: %s"%(idx, p_idx, d_idx, n_idx)
    
    f1.close()
    f2.close()
    f3.close()
    

    相关文章

      网友评论

        本文标题:人脸检测——mtcnn思想,生成negative、positiv

        本文链接:https://www.haomeiwen.com/subject/secasxtx.html