什么是CRI?
CRI(Container Runtime Interface)容器运行时接口,它定义了一系列的规范和要求,通过它,不同的容器运行时可以与kubelet集成,无需重新编译而直接调用。直观来看,它就是一些列接口的定义:
以kubernetes release-1.17 branch作为参考。CRI归到一个独立的repo叫做cri-api 来管理。https://github.com/kubernetes/cri-api/
CRI接口定义位于cri-api/pkg/apis/services.go,氛围RuntimeServie和ImageManagerService
// RuntimeService interface should be implemented by a container runtime.
// The methods should be thread-safe.
type RuntimeService interface {
RuntimeVersioner
ContainerManager
PodSandboxManager
ContainerStatsManager
// UpdateRuntimeConfig updates runtime configuration if specified
UpdateRuntimeConfig(runtimeConfig *runtimeapi.RuntimeConfig) error
// Status returns the status of the runtime.
Status() (*runtimeapi.RuntimeStatus, error)
}
// ImageManagerService interface should be implemented by a container image
// manager.
// The methods should be thread-safe.
type ImageManagerService interface {
// ListImages lists the existing images.
ListImages(filter *runtimeapi.ImageFilter) ([]*runtimeapi.Image, error)
// ImageStatus returns the status of the image.
ImageStatus(image *runtimeapi.ImageSpec) (*runtimeapi.Image, error)
// PullImage pulls an image with the authentication config.
PullImage(image *runtimeapi.ImageSpec, auth *runtimeapi.AuthConfig, podSandboxConfig *runtimeapi.PodSandboxConfig) (string, error)
// RemoveImage removes the image.
RemoveImage(image *runtimeapi.ImageSpec) error
// ImageFsInfo returns information of the filesystem that is used to store images.
ImageFsInfo() ([]*runtimeapi.FilesystemUsage, error)
}
对应的rpc接口定义位于cri-api/pkg/apis/runtime/v1alpha2/api.proto文件中:
// Runtime service defines the public APIs for remote container runtimes
service RuntimeService {
// Version returns the runtime name, runtime version, and runtime API version.
rpc Version(VersionRequest) returns (VersionResponse) {}
// RunPodSandbox creates and starts a pod-level sandbox. Runtimes must ensure
// the sandbox is in the ready state on success.
rpc RunPodSandbox(RunPodSandboxRequest) returns (RunPodSandboxResponse) {}
// StopPodSandbox stops any running process that is part of the sandbox and
// reclaims network resources (e.g., IP addresses) allocated to the sandbox.
// If there are any running containers in the sandbox, they must be forcibly
// terminated.
// This call is idempotent, and must not return an error if all relevant
// resources have already been reclaimed. kubelet will call StopPodSandbox
// at least once before calling RemovePodSandbox. It will also attempt to
// reclaim resources eagerly, as soon as a sandbox is not needed. Hence,
// multiple StopPodSandbox calls are expected.
rpc StopPodSandbox(StopPodSandboxRequest) returns (StopPodSandboxResponse) {}
// RemovePodSandbox removes the sandbox. If there are any running containers
// in the sandbox, they must be forcibly terminated and removed.
// This call is idempotent, and must not return an error if the sandbox has
// already been removed.
rpc RemovePodSandbox(RemovePodSandboxRequest) returns (RemovePodSandboxResponse) {}
// PodSandboxStatus returns the status of the PodSandbox. If the PodSandbox is not
// present, returns an error.
rpc PodSandboxStatus(PodSandboxStatusRequest) returns (PodSandboxStatusResponse) {}
// ListPodSandbox returns a list of PodSandboxes.
rpc ListPodSandbox(ListPodSandboxRequest) returns (ListPodSandboxResponse) {}
// CreateContainer creates a new container in specified PodSandbox
rpc CreateContainer(CreateContainerRequest) returns (CreateContainerResponse) {}
// StartContainer starts the container.
rpc StartContainer(StartContainerRequest) returns (StartContainerResponse) {}
// StopContainer stops a running container with a grace period (i.e., timeout).
// This call is idempotent, and must not return an error if the container has
// already been stopped.
// TODO: what must the runtime do after the grace period is reached?
rpc StopContainer(StopContainerRequest) returns (StopContainerResponse) {}
// RemoveContainer removes the container. If the container is running, the
// container must be forcibly removed.
// This call is idempotent, and must not return an error if the container has
// already been removed.
rpc RemoveContainer(RemoveContainerRequest) returns (RemoveContainerResponse) {}
// ListContainers lists all containers by filters.
rpc ListContainers(ListContainersRequest) returns (ListContainersResponse) {}
// ContainerStatus returns status of the container. If the container is not
// present, returns an error.
rpc ContainerStatus(ContainerStatusRequest) returns (ContainerStatusResponse) {}
// UpdateContainerResources updates ContainerConfig of the container.
rpc UpdateContainerResources(UpdateContainerResourcesRequest) returns (UpdateContainerResourcesResponse) {}
// ReopenContainerLog asks runtime to reopen the stdout/stderr log file
// for the container. This is often called after the log file has been
// rotated. If the container is not running, container runtime can choose
// to either create a new log file and return nil, or return an error.
// Once it returns error, new container log file MUST NOT be created.
rpc ReopenContainerLog(ReopenContainerLogRequest) returns (ReopenContainerLogResponse) {}
// ExecSync runs a command in a container synchronously.
rpc ExecSync(ExecSyncRequest) returns (ExecSyncResponse) {}
// Exec prepares a streaming endpoint to execute a command in the container.
rpc Exec(ExecRequest) returns (ExecResponse) {}
// Attach prepares a streaming endpoint to attach to a running container.
rpc Attach(AttachRequest) returns (AttachResponse) {}
// PortForward prepares a streaming endpoint to forward ports from a PodSandbox.
rpc PortForward(PortForwardRequest) returns (PortForwardResponse) {}
// ContainerStats returns stats of the container. If the container does not
// exist, the call returns an error.
rpc ContainerStats(ContainerStatsRequest) returns (ContainerStatsResponse) {}
// ListContainerStats returns stats of all running containers.
rpc ListContainerStats(ListContainerStatsRequest) returns (ListContainerStatsResponse) {}
// UpdateRuntimeConfig updates the runtime configuration based on the given request.
rpc UpdateRuntimeConfig(UpdateRuntimeConfigRequest) returns (UpdateRuntimeConfigResponse) {}
// Status returns the status of the runtime.
rpc Status(StatusRequest) returns (StatusResponse) {}
}
// ImageService defines the public APIs for managing images.
service ImageService {
// ListImages lists existing images.
rpc ListImages(ListImagesRequest) returns (ListImagesResponse) {}
// ImageStatus returns the status of the image. If the image is not
// present, returns a response with ImageStatusResponse.Image set to
// nil.
rpc ImageStatus(ImageStatusRequest) returns (ImageStatusResponse) {}
// PullImage pulls an image with authentication config.
rpc PullImage(PullImageRequest) returns (PullImageResponse) {}
// RemoveImage removes the image.
// This call is idempotent, and must not return an error if the image has
// already been removed.
rpc RemoveImage(RemoveImageRequest) returns (RemoveImageResponse) {}
// ImageFSInfo returns information of the filesystem that is used to store images.
rpc ImageFsInfo(ImageFsInfoRequest) returns (ImageFsInfoResponse) {}
}
实际上,在Kubernetes 1.6版本之前kubelet是直接调用 Docker 的 API 来创建和管理容器的,但是随着运行时的增加,加入kubelet的代码变得越来越多,难以维护,所以社区成立了一个sig-node小组来重构这部分代码。
在kubernetes 1.7版本,将对容器的操作抽象成一系列接口的定义,即CRI(Container Runtime Interface),通过gRPC的方式来实现CRI,这样做即解耦屏蔽下层容器运行时带来的差异。
有了接口的定义,那谁来实现这些接口呢?答案就是CRI-shim!首先kubelet通过一个generatic-runtime的组件发送创建容器的请求给grpc-client调用CRI中的对应创建容器接口,CRI-shim 即gRPC server响应请求,将请求封装成runtime能识别的形式,调用runtime 创建容器。
CRI-shim
CRI-shim 作为CRI中定义的接口的实现,本质上其实就是一个gRPC server。对于docker来说这个shim就是docker-shim,对于cri-containerd来说,cri-shim就是cri-containerd:
image.png
后来cri-containerd 重构进containerd中,合为一个containerd进程:
image.png
作为cri-o来说:
docker-shim是由kubernetes开发维护的,目前代码组织形式还是放在kubelet中:
kubernetes/pkg/kubelet/docker-shim
其中在docker_container.go中,可以看到对于CRI的接口的实现,如:
// CreateContainer creates a new container in the given PodSandbox
// Docker cannot store the log to an arbitrary location (yet), so we create an
// symlink at LogPath, linking to the actual path of the log.
// TODO: check if the default values returned by the runtime API are ok.
func (ds *dockerService) CreateContainer(_ context.Context, r *runtimeapi.CreateContainerRequest) (*runtimeapi.CreateContainerResponse, error) {
podSandboxID := r.PodSandboxId
config := r.GetConfig()
sandboxConfig := r.GetSandboxConfig()
if config == nil {
return nil, fmt.Errorf("container config is nil")
}
if sandboxConfig == nil {
return nil, fmt.Errorf("sandbox config is nil for container %q", config.Metadata.Name)
}
labels := makeLabels(config.GetLabels(), config.GetAnnotations())
// Apply a the container type label.
labels[containerTypeLabelKey] = containerTypeLabelContainer
// Write the container log path in the labels.
labels[containerLogPathLabelKey] = filepath.Join(sandboxConfig.LogDirectory, config.LogPath)
// Write the sandbox ID in the labels.
labels[sandboxIDLabelKey] = podSandboxID
......
image.png
网友评论