美文网首页
2018-08-09 tensorflow for NN

2018-08-09 tensorflow for NN

作者: 镜中无我 | 来源:发表于2019-02-18 17:15 被阅读0次

    four steps

    • extract the eigenvectors of entity as the input, which is usually complicated but now can be directly obtained from datasets
    • define structures of Neural Network and IO(i.e. the forward-feed algorithms)
    • train to update the parameters(may utilize the backprob.)
    • estimate for testing

    forward-propagation(fully-connected)

    • neurons:
      linear conbination of inputs,which means multi-input for one output
    • form of algorithm:
      multiply of matrices
      tf.matmul(a1,a2)
    parameters and tf.Variables
    • tf.Variable is for saving and updating the parameters
    • tf.Variable is required to be initialized
    • tf.Variable
    weights=tf.Variable(tf.random_normal([2,3],stddev=2))
    #stddev is the standard deviation,mean so
    biases=tf.Variable(tf.zeros([])
    #------
    w2=tf.Variable(weights.initialized_value())
    

    random function for initializing

    function_name random distribution para.
    tf.random_normal mormal distribution mean,stddev,dtype
    tf.truncated_normal normal dis. but will self-adjusted when mean is more than twice as deviation as above
    tf.random_uniform uniform dist. minimum,maximum,dtype
    • note:
      the additonal para. seed is useful when the identical random value is needed
      tf.initalize_all_variables()
    • Variable :special tensor
    • dtype invariance
    • shape is alterable(validate_shape=False)
    tensorflow for training NN

    steps

    • initialize the variables and apoch=1
    • get a batch of training data(batch_size is given)
    • forward-probagation to obtain the estimator
    • define the loss function(cost function)
    • back-probagation to solve the optimization(minimize the cost) and then update the variables
    • repeat the steps above until the target is met

    相关文章

      网友评论

          本文标题:2018-08-09 tensorflow for NN

          本文链接:https://www.haomeiwen.com/subject/tisqbftx.html