美文网首页机器学习与计算机视觉
turicreate学习笔记1-activity_classif

turicreate学习笔记1-activity_classif

作者: Do_More | 来源:发表于2017-12-14 11:14 被阅读0次

    官方对应文档

    1.安装

    sudo python -m pip install turicreate
    

    2.activity classifier

    数据集下载

    • 数据预处理,生成turicreate识别的sFrame格式
    from glob import glob
    import turicreate as tc
    
    # load labels
    labels = tc.SFrame.read_csv('./HAPT Data Set/RawData/labels.txt',
      delimiter=' ',
      header=False,
      verbose=False)
    labels = labels.rename({
      'X1': 'exp_id',
      'X2': 'user_id',
      'X3': 'activity_id',
      'X4': 'start',
      'X5': 'end'
      })
    
    def find_label_for_containing_interval(intervals, index):
      containing_interval = intervals[:, 0][(intervals[:, 1] <= index) & (index <= intervals[:, 2])]
      if len(containing_interval) == 1:
        return containing_interval[0]
    
    # load data
    data = tc.SFrame()
    acc_files = glob('./HAPT Data Set/RawData/acc_*.txt')
    gyro_files = glob('./HAPT Data Set/RawData/gyro_*.txt')
    files = zip(sorted(acc_files), sorted(gyro_files))
    for acc_file, gyro_file in files:
      exp_id = int(acc_file.split('_')[1][-2:])
      user_id = int(acc_file.split('_')[2][4:6])
    
      # load accel data
      sf = tc.SFrame.read_csv(acc_file,
        delimiter=' ',
        header=False,
        verbose=False)
      sf = sf.rename({
        'X1': 'acc_x',
        'X2': 'acc_y',
        'X3': 'acc_z'
        })
      sf['exp_id'] = exp_id
      sf['user_id'] = user_id
    
      # load gyro data
      gyro_sf = tc.SFrame.read_csv(gyro_file,
        delimiter=' ',
        header=False,
        verbose=False)
      gyro_sf = gyro_sf.rename({
        'X1': 'gyro_x',
        'X2': 'gyro_y',
        'X3': 'gyro_z'
        })
      sf = sf.add_columns(gyro_sf)
    
      # calc labels
      exp_labels = labels[labels['exp_id'] == exp_id][['activity_id', 'start', 'end']].to_numpy()
      sf = sf.add_row_number()
      sf['activity_id'] = sf['id'].apply(
        lambda x: find_label_for_containing_interval(exp_labels, x)
      )
      sf = sf.remove_columns(['id', 'exp_id'])
    
      data = data.append(sf)
    
    target_map = {
      1.: 'walking',
      2.: 'climbing_upstairs',
      3.: 'climbing_downstairs',
      4.: 'sitting',
      5.: 'standing',
      6.: 'laying'
    }
    
    # use the same labels used in the experiment
    data = data.filter_by(target_map.keys(), 'activity_id')
    data['activity'] = data['activity_id'].apply(
      lambda x: target_map[x]
    )
    data = data.remove_column('activity_id')
    
    data.save('hapt_data.sframe')
    

    生成的sframe文件:

    sframe文件

    具体每个文件是什么意思,还没搞懂...

    根据生成的sframe训练core ml所需的mlmodel文件

    import turicreate as tc
    
    # load sessions from preprocessed data
    data = tc.SFrame('hapt_data.sframe')
    
    # train/test split by recording sessions
    train, test = tc.activity_classifier.util.random_split_by_session(
      data,
      session_id='user_id',
      fraction=0.8
    )
    
    # create an activity classifier
    model = tc.activity_classifier.create(
      train,
      session_id='user_id',
      target='activity',
      prediction_window=50
    )
    
    # evaluate the model and save the results into a dictionary
    metrics = model.evaluate(test)
    print metrics['accuracy']
    
    # save the model for later use in turi create
    model.save('mymodel.model')
    
    # export for use in core ml
    model.export_coreml('MyActivityClassifier.mlmodel')
    
    train result

    训练的准确率一般啦!!!

    model的高级运用:

    walking_3_sec = data[(data['activity'] == 'walking') & (data['user_id'] == 1)][50:200]
    
    print model.predict(walking_3_sec, output_frequency='per_window')
    
    print model.predict(walking_3_sec, output_frequency='per_row')
    

    3.把model放到app中使用

    建个工程,把mlmodel拉进去

    project

    然后按照文档说明把预测代码写到ViewController.swift里

    import UIKit
    import CoreML
    import CoreMotion
    
    class ViewController: UIViewController {
        let motionManager = CMMotionManager()
        
        struct ModelConstants {
            static let numOfFeatures = 6
            static let predictionWindowSize = 50
            static let sensorsUpdateInterval = 1.0 / 50.0
            static let hiddenInLength = 200
            static let hiddenCellInLength = 200
        }
        let activityClassificationModel = MyActivityClassifier()
        
        var currentIndexInPredictionWindow = 0
        let predictionWindowDataArray = try? MLMultiArray(
            shape: [1 , ModelConstants.predictionWindowSize , ModelConstants.numOfFeatures] as [NSNumber],
            dataType: MLMultiArrayDataType.double
        )
        var lastHiddenOutput = try? MLMultiArray(
            shape: [ModelConstants.hiddenInLength as NSNumber],
            dataType: MLMultiArrayDataType.double
        )
        var lastHiddenCellOutput = try? MLMultiArray(
            shape: [ModelConstants.hiddenCellInLength as NSNumber],
            dataType: MLMultiArrayDataType.double
        )
        
        override func viewDidLoad() {
            super.viewDidLoad()
            motionManager.accelerometerUpdateInterval = TimeInterval(ModelConstants.sensorsUpdateInterval)
            motionManager.gyroUpdateInterval = TimeInterval(ModelConstants.sensorsUpdateInterval);
            
            motionManager.startAccelerometerUpdates(to: .main) { accelerometerData, error in
                guard let accelerometerData = accelerometerData else { return }
                self.addAccelSampleToDataArray(accelSample: accelerometerData)
            }
        }
        
        func addAccelSampleToDataArray(accelSample: CMAccelerometerData) {
            // add the current accelermeter reading to the data array
            guard let dataArray = predictionWindowDataArray else {
                return
            }
            dataArray[[0, currentIndexInPredictionWindow, 0] as [NSNumber]] = accelSample.acceleration.x as NSNumber
            dataArray[[0, currentIndexInPredictionWindow, 1] as [NSNumber]] = accelSample.acceleration.y as NSNumber
            dataArray[[0, currentIndexInPredictionWindow, 2] as [NSNumber]] = accelSample.acceleration.z as NSNumber
            
            // update the index in the prediction window data array
            currentIndexInPredictionWindow += 1
            
            // if the data array if full, call the prediction method to get a new model prediction.
            // we assume here for simplicity that the gyro data was added to the data array as well.
            if (currentIndexInPredictionWindow == ModelConstants.predictionWindowSize) {
                let predictedActivity = performModelPrediction() ?? "N/A"
                
                // use the predicted activity here
                print(predictedActivity)
                
                // start a new prediction window
                currentIndexInPredictionWindow = 0
            }
        }
        
        func performModelPrediction() -> String? {
            guard let dataArray = predictionWindowDataArray else {
                return "error"
            }
            
            // perform model prediction
            let modelPrediction = try? activityClassificationModel.prediction(
                features: dataArray,
                hiddenIn: lastHiddenOutput,
                cellIn: lastHiddenCellOutput
            )
            
            // update the state vectors
            lastHiddenOutput = modelPrediction?.hiddenOut
            lastHiddenCellOutput = modelPrediction?.cellOut
            
            // return the predicted activity - the activity with the highest probability
            return modelPrediction?.activity
        }
    }
    

    代码这么简单,就不另外放demo地址了,把代码贴上去就可以直接跑了.

    于是就可以打印出预测的接下来动作了

    result

    还是很准的!

    相关文章

      网友评论

        本文标题:turicreate学习笔记1-activity_classif

        本文链接:https://www.haomeiwen.com/subject/vaghwxtx.html